(""

A RESEARCH PROGRAM IN THeE FIELD
OF COMPUTER TECHNOLOGY

AD-784 135

Keith W. Uncapher

University of Southern California

Prepared for:

Advanced Research Projects Agen-y

May 1974 H

ISTRIBUTED BY:

National Technical ‘nformation Service
U. S. DEPARTMENT OF COMMERCE
5285 Post Royal Road, Springfield Va. 22151

—

\

DISCLATNER NOTICE

Z @
ot

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

SECURITY CLASSIFICATION OF THIS PAGE Whan Dacts FEntersd)

= REA T TIONS
REPORT DOCUMENTATION PAGE At D LU -
' REPORT NUMBER 12 GOVT ACCESSION NO.[] 3 RECIPIENT'S CATALOG NUMBER
1S1/SR-74-2 | f?[) 8% /. 3.5
4 TiIT_E 7and Subtitle) . YYPF OF REPORT & PERIOD COVERED
A Reseaich Program in the field of Computer ﬁnnU?;7§ech;icaig§:port
- May ~ May
TQChHOI'Og‘ 6. PERFORMING 0% REPORT NUMBER
7 AUTNOR(yg) 8 CONTRACT OGR GRANT NUMBER(s)
Keith W. Uncapher (Principal Investigator) DAHC 15 72 C 0308
9 PERFORMING ORGANIZAYION NAME AND ADDRESS 10 PROGRAM ELEMENT. PRCJECT, TASK

AREA 8 WORK UNIT NUMBERS
USC iInformation Sciences Institute

4676 Admiralty VWay

ARPA Order #2223
Marina Del Rey, Califorpnia 902¢]

11 CONTROLLING GFFICE NAME AND ADORESS 12. REPORT DOATE
Advanced Research Projects Agency o May 1974
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, Virginia 22209 L’S'[/

14 MmUNITORING AGENCY NAME & ADDRESS(11 diffetent from Con:rolling Office) 18. SECURITY CLASS. (of this report)

1Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (of this Report)

Distribution unlimited. Available from National Technical Information
Service, Springfield, Virginia 22151}.

7. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, 1{ ditferent from Report)

180 SUPPLEMENTARY NOTES

19. XEY WORDS (Continue on reverse elde il necesesary and identily by block number)

l: automatic programming, domain-independent interactive system, natural lang-
uage, nonprocedural language, nonprofessioral computer users, problem solving,
problem specification, process transformatfon, world knowledge

2: interactive theorem proving, lemma generator, Pascal, program correetness,
program verificat.on, Reduce, syuwbo.ic executor, verification condition

20. ABS n°'CY (Continue on raverae aide Il necessary and identify by block number)

This repor. summarizes the research performed by USC/Information Sciences
Institute from 17 May 1973 to 16 May 1974. The research is aimed at applying
computer science and technology to problem arczas of high NDoD/military iupact.

The ISI program consisys of ten research areas: Automatic Programming- the
study of acquiring and using problem knowledge for program generation; Program
Verification~ logical proof of program validity; Frogramming Research Instru-
ment- development of a major time-shared microprogramming facility; Protection j

OO | "S5%, 1473 eoimon oF 1 nov es s oasoLITE
S/N 0102-014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entersd)

conHITY CLASSIFICATION OF THIS PAGEWhen Date Entered)

.

19. Key Words ‘continued)

generator

3: ARPANET, control. memory, microprogrammed processcr, microprogramming,
micreprogramming language, microvisor, MLP-900, operating systems, resource
shar-.ng, TENEX, time sharing, writable control memory

4L: access control, computer security, encapsulation, error analysis, error-
driven evaluation, error patterns, evaluation methods, protection mechanisms,
software security, verification

5: computer security, COTCO, interactive message service, message service,
reliability, terminal based message service

6: computer terminals, interactive message service, nffjce automation, CONNECT,
nonprofessional computer users, terminal-based message service

7: computer network, digital vcice communication, network conferencing,
packet-switched networks, secure voice transmission, signal processing, speech
processing, vocoding

8: liquid crystal displays, minimum communications terminal, plasme displays,
portable terminals, video display system, Xerox t.oaphics Printer

9: computer networks, coafiguration control, decisionmaking, information
display, load leveling, network data base, network management, network
performance, performance analysis, performance measu :ent

10: TENEX, KA/XI, PDP-10, PDP-11/40, resource allocation, computer network,
user quotas, ARPANET interface

20. Abstract (continued)

Analysis- methods of assessing the viability of security mechanisms of
cperating systems; Command and Control Message Technology- study of

advanced computer-based techniques for military message handling; Information
Automation- development of a user-oriented message service for large scale
military requirements; Network Secure Speech- work on low-bandwidth, secure
voice transmission using an asyncbironous packet-switched network; Techno' gy
Support- development of Xerox Graphics Printer facilities, portable te:s ls,
and mi'itary office terminal system; Network Management Information Certer-
developunent of a network performance-measurement methodology; and Research
Resor “ces- operation of TENEX service and continuing development of advanced
support equipment.

| a’/ SECURITY CLASSIFICATION OF THIS PASE(When Date Entered)

151, SR-74-Z

A Research Program in the field of Computer Technology

ANNUAL TECHNICAL REPORT: May 1973 - May 1974
\

prepared for the Advanced Research Projects Agency

EFFECTIVE DATE OF CONTRACT: 17 May 1972
CONTRACT XPIRATION DATE: 15 July 1975

AMOUNT COF CONTRACT: $6,616,798

PRINCIPAL INVESTIGATOR: Keith W. Uncapher
(213) 822-1511

THIS RESEARCH IS SUPPCRTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHCIS 72 C 0308 ARPA ORDER
NO 2223 . PROGRAM CODE NDO 3D30 AMD 3P10

VIFWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR S AND SHOULD *NOT BE INTERPOETFL AS HEPRESENTING THF

OFFICIAL O INION OR POLICY OF ARFA THE L &€ GUVFRNMENT OR ANY OTHER PERSON OR AGENCY CONNECTED WI!ITH THEM

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE DISTRIBUTION 1S UNLIMITED

INFORMATION SCIENCES INSTITUTE

G670 Admralts Way [Navina del Rey [Calif ornia 90201

UNIFLRSITY oF SOUTHIERN ¢ ALITORNIA (2F3) R0

18

RESCARCH/ADMINISTRATION SUPPORT

Gerhard W. #lbert
Nancy L. Bryan
Veporan L. Dunn
Patricia A. Hagedorn
Rose L. Kattlove

G. Nelson Lucas
Mary J. Winchell

Ruth Wnite

Business Mane~ r

tditor

Reception

Secrevary to Deputy Director
Librarian

Graphlc Arts

Business Offlce

Secretary to Uirector:
Princlpal Secretary

CONTENTS

figures
Abstract

Executive Overvieu

Ua Automatic Programming

2. Program Verl fication

3. Programming Research Instrument

b, Protection Analysis

Command and Control Message Processing Technology
6. Information Automation

7. Network Secure Speech

8. Technology Support

2o Network Management Information Center

10, Research Resources

il. Progr ammed Automation

Colloquia
Publlcations

Doctoral Theses in Progress

iv

vil

33
43
55
65
83
89
97
107
115

17
120
121

10.1

10.2

F I GURES

System architecture 12
NSW hardware 22
Decomposition of the veriflcation task 28

Jverall organization of currently running
verification system 29

Jutputs from components of program design and

verification system 30
The MLP-900 34
Baslic PRIM confliguration 34
MLP-900 confliguration 35
Basic PRIM software architecture 37
Security encapsulation unit 46
Representational hierarchy 47
IP3 evaluation scheme 48
trror-driven evaluation process 52

Abbreviated block diagram of proposed
communlcation system architecture 58

The ISl portable terminal 93

ISI research resources facility 108

1/0 bus switch 109

ABSTRACT

Tnis report summarizes the research performed by
ustc/Information Sclences [nstitute from 17 May 1573 rte e
May 1974, lhe researcnh is dJdimea at applying computer
science and technology to problem areas of high DoD/military

(mpact.

The [I>] program consists of ten research areas:

Automatic Programming- the study of acquiring anc using

proclem knowledge for program generation; Progr am

Verification- legical proof of program validity; Programming

hesearch Instrument-~ development of & major time-shared

microprogramming facility; FProtection Analysis- methoas of

assessing the viability of security mechanisms of operatin;

systems; Commandg and (ontrol Message Processirng Jlechnology-

the study of advanced computer -pased techniques for military

message handling; [nformation Automation- development _f g

user-oriented message service for large-scale military

requirements, Network Secure sSpeech- work on low-bandwiath,

secure voice transmission using en asynchronou’,

packet-switched network; Technology Suppor:- development of

Xerox Graphics Printer facilities, portable terminals, and

vi

AbSTRACT

millcary offlce term:na' system; Ne.vork Management

[nformation Center - development of & network performance-

measurement methodology; and Research Rkssources- operation

of TcNEX service and cortinuing develcpment of advanced

support equipment, Progremmed Automation. an investigation

of the feasibility of a computer-pased manufe turing

technology, zonsisted of a study phase only.

EXECUTIVE QVERVIEW

Tre Information 5Sciences Insti.ute

(IS1), a research unit of the Unlversity

of Souchern California’s Schocl of

tnglneering, was formed In May 1972 to do

research In the flelds of computer and

comminications sciences with an emphasis

«r cystems and appllications, The Insti-

‘ute, located off-campus, has sufficient

wutonomy wit Jdn taie University structure

v assure 1T the freedom reaquired to

iaeelfy and engage In <l gniflcant

reseer-h programs.,

& close relatlonship Is maintained

with U.L academ. - programs through active

cooperatic~ among tne Institute, the

>chool of JInginsering, the Degartment of

Electrical Ena.nserina, and the (omputer

Science Uepa: meit. Pn.D. thesls super-

vision 1Is an integral par of IS1
programs. Also, participating facLlt ¢+ and

graduate students from other degcartments

provide interdisciplinary capablilitles for

131 projects.

At the end or the second vyear of

operation, the fuill-~time professionel!

recearch stafft npumpers 32. The total

number of IS1 employees, including

full-time research staff, participating

faculty and) aduate students, and support

pcersonnel, is 80,

The activitlies of 1S17s eight major

areas of research and associated support

projects are summarized briefly beiow,

some «of the research projects reported in
this document are discrete activities in
therselves; others can be seen as parts of
a iarger whoie, for example, Automatic
Precgrammling, Preg-am Verlfication, and the
projects

Programming Research Instrument

should be considered as Individual parts

of an overall research effort in Program-

ming MMethodology; Command and Controi

Message Processin,g lechnoingy, Information
Secure OSpeech, arnd

Automation, Network

T<=chnology Support are linked elements of

a majcr Investigation into Network
Communication; Technology. These mutual
Interdepecencies among the various

projects at 1S[contribute largely to the
frultfulness o the Insilcute’s research

activities.

vii

i Mt Wkl

i

Lo R L e R

EXECUTIVE OVERVIEW

AUTOMATIC PROGRAMMING

The Automatic Prongramming project s

composed of three naln activities: firsst,

the design and prelimlinary Implementation

of an automatic programming system;

second. the implementation of a Program-

mer ‘s Interface, o language-independent

Interface vetween a programmer and his

language; and third, the initlation (in

coyperation with ARPA) of the National

Sof:ware works, an effort to transfer

technology for progran development to

military commands.

e automatic programming system rep-

resents a major attempt to decl direct.y
with nonprofessiona. computer users
wl thout the intervention of computer

programmers. “ye primary goal! of the
system is to acquire from a4 dia'logue with
the wuser the elements of the probiem
Jomain, ther translate tne ili-deflned

speci flcatlons i~to a precise form and

write a program to accomplish the user” s

desired task. An initla! automatl! c

programmirg system and the 4associative

data pase mecrani sms it relles on have

veen implemented, and it has peen used in

turn to implement an initial version of

the Model Comgletion phase., This version
is able to take carefully selected smalil,

simple domaln and problem scatements of an

Impreocise form and convert them to running

programs by pecrforminag a4 series of

structuring and program bullding trans-

formations that reorder the arguments of
relations and actlons, convert the
arguments o0 tne correct type, and fill in

omlssions,

The P ogrammer’s Interface eifort

addresses the general problem of creating

a suitable on-lise environment for pro-

gramming. It attempts to exploit the

otservaple wuniformity among programminc

environment systems by creating a single

proaramml na environment capable of easily

interfacing users to a variety of on-line

programming :anquages. With minimal cost

and eftort, the Programmer’s Interface

thus transferms a programmer”’s language

into e orogramming system with powerful

depbugqglng, editing, and flling “apa-

pilities. The first such Programmer’s

Interface has been censtructed and

interfoced to the programming language

ECL. It was implewmented and debugqed in
approximately three weeks, including the
interface to tClL. Althcugh no otner

ianguage interfs~es have yel been built,
it is estimatec that an interface to
anothes suitable languagn could be

acsigned, implenented, and debugged in

less than a week,

Ihe concept of the Natlonal Software
norks <rose from the r:alization that
serious progress In l!.proving tne pro-

duction of large programs would be made

only as the resvlt ¢ a major attempt to

Iimprove generai access to tools, central-

iz2inqg the management of a vast lInventorv

of currently existing hardware and

software. lo do this, It is proposed to

1ink tne great wvarlety of tools now

available on the ARPANET into & ccherent
system for software devejopment, =mploying

a standard interface for users and a very

iarge secondary memory for storing and
managing user files. 15] was lnstru-
mental Jn the system design and functions

as technical orcject engineer,

PROGRAM VERIFICATION

The wverlfication of a computer

program s (he democnsiration by a mathe-

matical proof of the conslstency between

the program and lts specification or

documentation., “rogram verlfication <can
greatly Increase the rellability of
softvare by assuring that Drogr ams

actually do what tney are Intendedg to do.

The large amount of time and effort now

devoted to testing activitles :an be

slgniflcantly decreased by verlfl:ation

urocedures, which will uitimately reduce

software costs., FProgram verlificat.on can

EXECUTIVE OVERVIEW

also have an intluence on the deslgn of

programming languages and c¢an serve to

test advances in both programmlng method-

ology and the semantic deflnition of

programming lanqguaqes,

In adaition to experimenting with

new speclfication languages, sftructuring

methods, and pruof methods, the Program

Veritication project Is building <oftware

tools that wil)l aid In the design and

construction cf veriflied programs,

Verlfication condition generators for ¢wo

programming languages are already 1In

operatlon; algebralc simpiification and

Interactive proving of the lemmas produced

oy the verification conditlorn generator
are fiso belng accompllished. Current
plans are to deve'.p these components
into a smoothly Iintegrated system vhose

capabilities can pe demunstrated on

signl “lcant, real programs,

PROGRAMMING RESEARCH iHTixu=c~!

The Programmina Research instrument
{PRIM) project has created a fully
protected experimental computing environ-

ment w!th continuous meltluser access. An

ARPANET-based system, PRIM aiiows each

esearcher to create h!:< own specialized

compul ing engine capable of belng changed

and adapted to hls specific needs, The

PRIM hardware and sof tvare together

EXCCUTIVE QVIRVIEW

provide & working envircnment in which the

user can Impiement hlz own computer in

micrncode and run that computer In hls

taryet orogram environment. PRIM can be

usea to explore c-omputer archltecture,

language development, and sgecial-pu-pose

asrocossor design--all of especlal rel-

evance to DoD selection on< use of

computer equipment,

The PRIM facility makes it pussiole

to simulate new hardwa e -rchitec.ures and

designs ‘r microprogremmes software, That

is, scftware can be created for hardware

n. yet available, and nardware designs

may be extensively used ana changed even

pefore the pintorLype stage of dJdevelopment

is reached, whic. shrould both cut iead

rtime und im “ove declslouns connected with

the speclal-purpose machine procur2ment
cycle,

At present, most mi croprogr ammed
processors oper ate ¢ @ slingle oo -
environment, wvwith a minimal operatlinyg
system and a slingle appllcation. Tes

partlicular value of the PRIM project and

its Introduction of a mlcivarogrammed

supervivor (microvisor) state has been to

make an easliy accessed, sharebple,

power ful! deslign (ool for the computer

development community.

To familarize potential wusers with
the operation of the PRiM systz=m, I5{ will
provide introductory scminars and an
°xtensive documentation package PRIM

user documentation, consisting of an Uvzr-

view, User’s Cuide, MLP-900 Referetice

Maruwal, and GPM Reference Manual, is
nearing conpletion ang should be avallable

to interested potentlal users by mid-1974.

PROTECTIJUN ANALYSIS

The Protectlon analysi- project has

cevelopad and Jis continulng to refine

Lechni'- es and standards for testing and

evaluating the proctection features of

operdating systems. Jts goal I35 to p.ovide

ancwers ro ifhe qguestlon ¢/ what tests can

and should be apolied tc -~ erating systesms

in order to dcteraslne (o what extent

glven sysiem meet: lts requlrements for

pre.enting unauthorized or imprcper opera-

tions and how s5ystems can best be

deslgned &and implemented to refiect such

requirements, The research direct'y

supports the soltvare securlty require-

ments Jisued by (oD securlcy pollcymaking

agencles,

ODuring the last reporting perlod,

what Is onow the Protectlon Analysis prc-

Jject was designated as the Emplrical

Svstem Stuuy and Protectlion Theory

projects. These projects merged to study

ways ot applylng empirical techniques

toward achieving a “production® evaluation

tool, Ths study was influenced by the
observat.ons that the securlly community
lacks a productlion eva.uaticn tool; that
tnere 15 currently no krown organlzed

effort .o collect and analyze protection

errors; and that such errors do fall Into

distinct classes or ®"patterns.® The study

focuses on the way in which the output of

protection evaluations (i.e., errors and

their patterns) can be utilized as

feecpack in tne cdevelopment and im.Tove-

ment of an evaiuétion method itself, The

result is the design of a systematlized

pattern-driven evaiuation scheme that

utilizes the output cf error anailysls both

clrectiy, to qovern the evaluation

process, and inalrectly, to increase the

comprenensiveness of the tool based on

this metnod. Ihe Emplrical Sysiem Study

groug also devised a simpie, ecconomical,

and reliacie approach to the securlty

retrofit problem for batch and remote job

ertry systems, termed encapsulction,

COMMAND AND CONTROL MeSSAGE PRUOCESSING

TECHNOLOGY

Inis project explores the vuse of

advanced computer and communication tech-

ni ves in milirtary environments, ihe

EXECUTIVE OVERVIENW

Implementation of an autowstic message

handling service on a packet-switched

dlqgital network (exemplified by the

ARPANET) has immed!ate ara significant

usefulness to the milltary comminity. Ine

possiple applications of such a service

have served as the principal focus of the

work to date,

A speciflc example of such an

environment was the object of a study

per formed by ISI in the spring of 1973 to

investigate the possliple application of

network technology to the C(COTCO (Consol-

idation of Jeiecommunlications on Jdahu)

program, a Dol effort to Improve military

communlcations on Oahu,

The Navy, whici has bcen a.siarecd the

tes® of implementing the JlCO program,

currently nas the [5i plan under consider-

atiun, Interest nas been expressed in

perfoerming, vith the cooperation of ARFA,

a test of an interactive system such as

the one proposed,

In tne meantime, the Command and

Control Messace Proressing Technology

(CCMPT) vroject has addressed the issues

involved in the implementation of auto-

mated message hanclling services for other

military environments besides C3{C0. In

order to achieve the scrt of system

xi

EXECUTIVE OVERVIEW
envisioned, It Is necessary to piovide Lne

follioving basic components and attrjbutec:

L Core-system hardvare archlitecture that
serves as the foundation for bullding

the service,

L Core-system software architecture and
programs vhose facillities are easy to
learn anda operate by users unfam!liar

vith comnuters.

. Application software that performs the

functions required.

8 Reliability of service,

L Security of data.

The CCMPT project is currently in a

study pnase, identifying the prcblems and

the opportunities for message processing

in the military environment. The program

out iining getallea areas for research is

now belng prepared, In addition, we are
exploring opportunities for joint cevel -
opment with military use-s tnat will apply

our message technolooy In experim=ntal

form to actual mllitary cituations,

INFCRMATION AUTOMATION

The Information Automation project is
currentily in the design phase of a te e-

communi cations task conceived to ald the

xit

millitary and users of the ARPANET. 1he
goal ls to implement an on-llne message-
handling system (the core of the Commandg

and Control Message Processling lechnology

Project above), which will be usable by
people wurfamillar with cowputers. The
initial study for "hls task Investigated
the user style and functional require-

ments of a large multiservice military

community., The functioral specifications

for thls system Iincluoce message prepa: -

ation (creatlon, editing, coordination),

message transmission frcuting, release,

status query), and message aelivery

(priority, dellvery, sorting, scanning,

forwarding). Aaditionally, the system

will support off-line report generation

and message archives. The research goal

of the Information Automation project is

to develop the necessary human~-factors

met hodology needed to introauce inter-

active computer terminals into office

environments, The project theslis is that

current systems technology will suffice

for many of the current automatable

problems and that what is reqguired is a

collection of tecnniques to make the

computer acceptable arnd wuseful to non-

technical personnel. (he target system
wili be implemente¢ at IS on TENEX and
the ARPANET. It is expected that an

experimental system providing the above

functions will be avallabie to ARPANET
users early In 1976.
N TWORK St CURE SPreCH

In response o the hign military

priority of developing & digital means for

secure speech transmission, the 5] Net-

werk Secure Speech preject ls attempting

to estaplish the means to us®s a packet-

switching network (the ARPANET) for

secure, high-quality, real-time, full-

duplex voice communication., The resulting

voice communications system will have the

following advantages: it wiil pe abie to

pe securea (encrypted) (o anv desired

level of complexity and securlty; It wilil

De able tc achieve extremely hlgh gquality

transmission with a low error rate; it

wili exploit the natural pauses and breaks

in human speech to achieve a lower overall

c¢ata rate; it will vpe nlghly compatible

with future communications systems (satel-

lites, lasers, etc.). The project’s major

goai Iis to establish the methodology of

using the ARPANET for communici lon and to

I nlement it with real-time bandwldth

compression (vocoding) as a proof of feas-

Ibility. Present efforts are to perform

network measurements for the development

of the required protocois and to implement

the chosen vocoding technlque; furure

EXECUTIVE OVERVIEN

plans are o optimlze the communication:

protocols and to improve tne quality aix

reduce the bpandwvidth of the vocoding
technlque.
TECHNOLOGY SUPPORT

The lechnoiocgy Support sectior
jescribes three ot the major advanced

hardware systems being develcped at S]:

the enhancement of a Xerox Graghlcs

Printer system to produce a high-quality

gocument ¢rinting capability in the form

of a network terminal; a video display

system; and & oriefcase-sized portable
terminal designes for use with the
ARPANET. Each of these hardware efforts

wvas undertaken either to demonstrate a

capahility for a recognlzed Dol appli-
catlon or to provide the necessary support
several sofiware

for the projects tnat

compose the Network Communlcations Tech-
nology effort (Command and Control Message
Auto-~

Processing Technology, Informatlion

mat ion, and Network Secur: Speech).

NETWORK MANAGEMENT INTORMATION CENTER

Computer networks service a highly

heterogeneous wuser populatlon, possess a

compliex structure of hardware and soft-

wvare, and rcqulre careful artlictration of

the potential conflicts among users,

W, i

hnsts, and the network budget, The need

for a performance measurement methcdoliogy

is qreat, particulariy uvecause of the

aynamic short- ara long-term variations in

retworx wot kloaa,

1

Ihe Network Management Information

Center (NMIC) at [5], launched in March

1974, will pravide an eftective means for

resolvinag technclogical issues in netrork

performance by developing a report/clsplay

capabllity that will furnish information

on network status and operatlons as well

as providinag on alternatives assessment

capabi lity that will permit rapid man-
a2gement assessment of the relarive
gesirability of network alteraticors and

ennancements.,

Achievirng the capabilities described

above requires accurate knowlecge of

network/subnetwork status ard performance,

Thus, the nitial focus of the project
will pe to estsulish an alternate Net-
wvork Control Center (NCC) which wilil

(1) provide a scheduled backup capabllity

to the existing NCC at BBN, (2) develop

operatinry policies and prccedures for

cencurrent cooperacive operatlon of

muitiple NCC's, thus assuring the integ-

rizy of the network in the event of an

NCC outaqe, and (3) develop requlrements

and objectives for a minlmum-manpower,

.
xiv

rinimum-skili-level NCC, thus clearly

separating the roles of equi:pment vendor

ana operations.,

MAIC will pe of direct use to all Col

and domestic 4daencies concerned vith the

design and implementation of computer

networks. Since it wlll provide a cen-

tralized means for data reduction and

transformation into forms permi tting

cirect !nterpretatiin by management, ¢Cthis

research wili 2lso constitute a gerfor-

mance-analysis capability of direct

interest ro agencies dealing wvith

sensitive material--agencies traditicnally

unaple tc gain full wuse of performance

tools and consultants pecause of the

sensitive nature of their jeb stream. In

addlition, the research will also be of

direct benefit tc ARPA/IPIO in manaulng

the ARPANET, since on-line performance

informatlon malntained at NMIC will
provide a centralized access point for all
network performance Information for use In

management decislonraking.

PROGRAMMED AUTCMATION

From July 1972 to December 1973 the

Programmed Automatlon project evaluated

tne feasibility of varlous advancements in
co.mputer-pased

manufacturing systems,

evaluated the economic impact on the Uu.S.

economy #nd the 0DoD from Implementing

those advances, and defined the speclfilc
development proaram and resources requiret
ihis consisted

to achieve them. project

cf a study phase only, and further work

has since peer, ¢iscontinued,

RESEARCH RESQURCES

The IS1 time-sharlng fac: lity,

operatea as a research and service center

in support of a oproad set of ARPA

projects, consists of two POP-10 CPUs,
paging oox, large-capacity memory, nigh-
per for mance pagzing drum, on-lire file

stcraqe, a~d associated peripherals. The
hardware acoulred in the past year as part
cf tne general effo-rt to improve system
availavility, capacity, ana efficiency in-
cludes a second POP-10 CPU, an additional
128K of high-speed memory, six disk drives
that will approximately agouble the pres«nt
file

on-line storage, and sever al inter-

faces and swvitches designed and built at

Is1.

EXECUTIVE QVERVIEW

In an effort to reduce system load, a

group allocation scheme was introduced in

March. This scheine divides the total

number of avallable job slots linto

general-access and limited-access cate-

gories, with each type further subdivided

into groups assigned a quota (varying in

size throughout the aay) specifying how

many group members will bpe guaranteed

access to the system. Group members whose

group quota is filled can log in off-quota

to fill other slots not in use at the
time. Wnen the system’s totai available
quota s set to a sufficliently low level,

the system is responsive and effectlive to

those allowed to log on. In all, the
initial experience with group allocaticn
nas oeen gcod,

The report that follows presents a

detailea view of the gcals and accomplish-
ments of the many different areas of IS]
during the Institute’s

research second

year of operation,

xv

o] o R TR

S

i

PROJECT LEADER:

RESEARCH STAFF:

CUNSULTANTS:

RESEARTH STAFF SUPPORT:

PESEARCH ASSISTANTSS

LHTEODUCTION

A< reported la<t vyear,
futeratic fFronrarripa (/AP)

centered uypen three man

Firet, we have desjaned

AUTOMATIC PROGHAMMING

Rotert M. Palzer

liortor ne Greenfeld
williar C. Harn
walter . hyder
Cavia S. vile
Albert v. lobrist

John trown
Martin J. Kay
William S. hark
Ann 0. Kubin

8. A. Sneijl

Chloe Holq
Kichard Hale
Robert Lincerd

~adine ilalcoln
Lavid Wilczynski

tneir relatienshine with

it laws, it, trenstormations
constraints--hLe aveitatle in .

form within the systen and that the

werk in the

be aeneral crouch te fesl cffectively with

rroject hear

A vide variety of cuch physics.

activities,

interacticor with nomnjrofessional
and berun to
users rmeans that heth the ohysics and

implement an automatic programring system.

Functionally, the twe

characteristics of this

probler staterents will be
rost irportant
orientead (as opponed te conputer-ori ented)
5y ter are its

terms, preferably in natural

independenze frem any particular problen

domain and its attempt to

with nonprofessionai
without the intervention
proarammers. These choices

dictated the direction of

that they will he "loo<e¥
ceal directly
containina incomplete, incontistent, and

computer yseres
irrelevant statenents rather
of computer
precise ftormal structyre.
have larcgely

aoal of the system is tec acquire

the project.

dicloque with the user the nnysics of the

Pomain indenendence reguires that the

"ohysics® of the domain--its

loosaly defined dorain, structure

objects and

use it to understand furt her

cther ob'ects,

processable

larnquaae s aANa

aesc,; ptions

compuyrication

-

INTTORUCTION

and write a proaram 1o accomplish the

o
roer s ostated Lask.

fovard this end, we have im:lemented

an gsseciative aata base in which to store

the rules, objects, and reiations of a

aorain ang have jntecgrated inte LISY a

pattern match facility to access the items

stored. Using this tacility we have slso

implemented a prelircinary version of our
system’s striciuring portion, called Fcael
Completion, vihich is abl'e to structure and

convert to executable form simple small

domain and prohler descriptions,. The

other major cemponent of our systen,

lomain Accuisition, which will acqulire the

loose model of the domain, is still in the

plannina stace; wve are at present

cimplating its hbehavieor in sceparios to

learn mere about how it should perferm,

Lurina this next year, we expect to

implement an initial version of Jomain

hcquisition, achkieve a complete running

syster, and concentrate on extending both

the capabilities of each phase and the

system’s abillity to deal with domains of

significant size and complexity.

Second, we have completed work on a

lannuaqge-independent interface between a

proanrammer and his lanijuace, called

the Programmer’s Interface (Pl), which

transterms his lancuage into & »roaramiing

system with alrost all of the capabilities

nf the i TL«LISP (formerly BEN=-LISP)
svstem: power ful debunging, editing, and
filing capabilities, as well as the

abiiity tc moaifv, croup, ana rejssue
previous comrands. Tisis wor k is
sianificant at two levels. First, it

provides a very quizk and inexpensive way

of enhancing the procramming environment

of an interactive language. fuch more

importantiy, however, it demonstrates the

rclative ranquaar independence of many of

the toois vrequired for program building

and debuaaing.

This recoanition led directiy to the

initiation, In cooperatlion with ARPA, of

our third arca of involvement, the
tiational Softeare Works (hSvi). This i* a
major new ARPA project to transfer
technoloay for program development to

military commards within Dol. Because the

Initlal MNSW is planned for test

installation in July 1975, 1its scope is

deliberazely limited to make this early

delivery feasible. Nevertneless, it

incorporates many advanced concepts and s

explicitly designed for expe..sion. It

sianificantly e.terds the PI concept by

separating the tools used for ,roaramming

from those used for program execution.

The NSW provides a framework that controls
the access to anc use of tools through a
standard user interface and enables new
tocls to be easily added. Hecause thecse
tools can exist on different machines, the
frameworh acts as an op<ratinc system by
making the use of a tool independent of
its locatlon; it automatically initiates
the tcol, ectablishes communication with
it, transfers necessary files for its use,
and saves any output generated. The WS
thus ties together tocls that exist
anywhere or the ARPANET into a coherent
system for software development. Part of
the NSV is a user interface tnat
standardi zes the way In which users
initiate & tool, communicate with it, ask
for help, or exarine their output. Thre
final compcrent is a very larqe sccondary
memory for the storace and management of

user files.

In addition to these components of
the NSW, vhich merely provice a convenient
home for tools and which enable wusers te
uni formly access and cowmunicate with
them, the tools themselves exist,
determining the system’s capabilities to
affect software development. These tools
are divided into twvo categories:
(1) ®"centraltzed® tools, like edltore,

flovcharters, test case gencrators, etct.,

AUTCMATEC PROGRAMMING

wnich are jincependent of the tarqget
rachine on which the program being
developed is te run while in production
mode and which therefore only require
implementation on a single machine, and
(<) executior rachine tocls, like
compilers ang run-time monitors, which
actually run on the target machine and
which ~ust be re-implemented on cach

tarcet machine.

AUTIOMATIC PROGRAMFGING chrOGRT

After ar initial survey nf current
work in the field, the AP project members
develcped a rlan for attackine what
apreared to bLe the fundarental j«suves of
automatic proaramnina. This tcok the form
of an actual! system, the desiqgr and
implementation of which is now in its
early stages., The results of the initial
survey and the overall view of the field
adopted are reported elsewvhere [1,2]. It
should be emphasized that this project is
seen not as an incremental advance in
computer lanquages or the art of
programmi ng, but rather as an attenpt to
make the pcwer of the <computer available
to a larce class of wusers without the
necessity of a step like that now called

programminc. Ultimately, a client shou:d

be able tec negotjate directly with a

AUTOMATIC PROGRAMMING

corputer system in much the same way as bhe

now negotiates with a programmer.

Computer use generally falls into two

categories: wuse of existing programs or

creation of new ones, There is no sharp

distinction between the two, because data

fed into existing programs can be thouaht

of as instructions that program their

behavior and because the creation of new

programs vtilizes either compilers or

interpreters that treat such instructions

as data. Alsc, the techrigues for trans-

latine a task into appropriate inaput for

the twc are very similar. Mevertheless,

we have chosen to deal only with

nrorcramring activities, which we reaard as
the nrocess of translatinag a task to be
nerformed into a computer lanquage, taking

into account the constraints and limi-

tations of both the computer and the

domain of interest from which the task was

drawn.

The constraints and restrictions of

the computer have increasingly been
incorporated and internalized in pro-
ararmi ng advances for several years. [hey

are mani fest in better lancuages,

automatic storage mechanisms, and optimi-

sations of many forms. On the other

hand the structuyre, constraints, and

limitations of the problem domain have
generally not been incorporated intco
progremming systems, The use of such
knowledgye |s a major theme of auto-

matic prcgramming, characterizing the

distinction between it ana conventional

programming, and raises i number of

i ssues, If the system is to understand

something of a domain--a particular

universe of discourse--how is the

rnowvledge on which this understanaing is

based to be represented? What procedures

can be made available for exploiting this

knowliedge in ouiding the system’s inter-

action with a wuser and In generating

programs? How, in particular, 1is the

essentlally nonprccedural information in
constraints and limitatiors to be

reflected in a procedural form? What can
be done to help identify inconsiztencies?

How cdi. the system be aiven a capacity for

inference similar to that which forms the
rainstay of human communication and which
allows obvious details to be left

unspecifiec? viill the system be abie to

understand its own products well enough to

be able to modify them in response to

chang2d reqguirements? Answers to these

questions define the front on which

important advances In automatic ypro-

qramming wi |l be made.

The desianers of programmi ng systems
have unti | now concentrated their
attention on creatino Instruments that
would be easy to play. Lixe all
instruments, the <system had a purely
passive role in the programming enter-
prise. We, or the other hand, tcok

the view that the problem of programming

is largely a problem of communication and

that communlcation, to be easy and

n~*yral, must be with an active agent.

Thus the main distincticn between

conventional and automatic programming is

the latter’s use of a semantic model of a

domain to structure the dialocue between

the system and the uvser, to understand the

user’s responses, and to translate the

user’s responses intn actions. The major

distinctions between the work reported

here and other automatic programming

efforts are the follewings first, its

independence of any particular domain ond

its acaquisition of the domain model
through a dialogque with the wusery and
second, the informal and typically
ill-structured manner in which both the
domain semantics and the task to be
programmed are speciflied. In fact, these
two areas represent the two main

focuses of the projJect: dialoque-driven

acquisition of a dormaln and translation of

AUTOATIC PROGRAMMING

ill-defined specifications Into a precise

form.

verall System Sctructure

In our plan, the AP system cunsists

of four processina modules and six data

bases. The data ba-es consist, as much as

possible, of de«criptive (rather than

imperative) knowledge, organized so that

the system can use tnis knowledge in many

different vways. These data bases have

been secreqated bhecause of the di fferent

lonical functions they perform and because

of the way they are treated by the

different yrocessinag redules.

Data Pases

The LUomain {nowledoe data base

contains ali the descriptive intornation

about the problem domain, such as the

types of objccts that can exlst in the

domain and thelr descriptions, the type:

of actions that can occur in tne domain,

the relations trat may exist between

obiects or evercs (action oc.urrences),

and any constraints t{hat must be satisfied

by the domrain.

The Domain iodel contalns, at any

point in time, an in.tantaneous snapshot

of the inutantialted objeccs in the dorain

AUTCHATIC PROGRAMMING

and their relationship to other objects in

the domain., It represents, through t.me,

a direct sirmulation of the problem domain.

vhe Loose Mode'! contains the problem

statement in an imprecise form that may te

incomplete cr ambiguous and that can be

understoord only ir the context of the

information in the 0QDomain Knowledge and

Domaln lModel data bases.

The Precise Model, on the other
hand, represents a precise, complete,
unambiquous, and directly interpretable

process for cZolving the problem pused.

The Strateay Knowledge data Dos2

consists of information that quides the

choice of actions and/or objects for those
alterrative rossibillities

Actions wvhen

exist within the domain.

Finally, the Script data base

contains partially-filled-in fecrms that
auide the dialoaue between “he system and
the user and are dynamically altered on
the basis of the user’s input and by the

demands of the Model Completion moduie.

Processing Modules

Initially, to simplify the

implementation, the processing nodules

will be Hhighly self-contalned and will

have only a limited knowledge of the

processing and requirements of other

modules, Laver thev will be wmcre highly

integrated and cooperative.

The wvomain Acquisition module is

responsibie for communicating with the

user, building the Domaln Knowledge and

Uomain Model data bases, obtaining the

Loose Model statement, deteimining on

syntactic grounds the well-formedness of

all this information, bui lding and

modifyine the Script, and wuvsing it to

direct the dialogue for the acquisition of

further informetion necessary for such

syntactic well-forredness or requested by

the Model Completion module.

The Modei Completion mocdule deter-

mines the semantic well-formedness of

the Loose Model on the basis of the

information in the Uomain Knowledge and

Demaln Mcdel data bases. It is

responsible for transforming the Loose

Model into an operational, Interpretable

form called the Precise Model. Any

inability to perform this transformation

causes a descriptior of the reason to be

passed back thruuch the Script to the

Domain Acquisition phase, which then

Interacts with the user to correct the

deficliency (usuvally by adding more

knowledce about the domain to the Uomain
Knowledge data base).
The Interpr«ter execcvtes the action

sequences in the Precise l'caet and updates

the Demain todel accordingly, It is

responsible for locating ubjects defined

decscriptively, evaluating conditions to

select alternative sequences of actions,

and maintaining restrictions on domain

behavior.

Tue Data Base Handler is respcnsible

for maintal ning the various data

bases, deciding on store-recompute policy,

maintaining conlstency, and (through

inference) nhscuring the di fference

between explicit and implicit daota.

A primary objective of our project

has been to <create a core experimental

system for testing progress on Q(omain

Acquisition and Model Completion. As

such, the Interpreter and Data Rase

Handler, which have been completely

specified and Implerented, are being used

for toth the Precise Model and the

implementation of the AP system itself.

To fully wutilize these implementation

capabiliclies, the Domaln Acquisition and

Model Completion modules will be treated

as domalns with their own actions,

ob Jects, constraints, and rules of

AUTCMATLIC PROUGRAMMING

inference. This Footstrappinag vill focus

alttention on the real problems of using

our approach in corplex domains.

A more detailed description of the

system is civen in the tollowing

subsectijons, which focus on the

representation of knowvleage and the form

of the Precise Mouel produced by Model

Completion.

xnovledge hepresentation

Throuchout the system, knowledae is

reprecsentes as stored tuples. The first

element of any tuple specifies the type of

tuple; the rest of the elerents are the

arcuments for that tuple. fach stored

tuple is associated with a particular

domain. Data hases are compartmentalized

into separaie dowains that fori a lattice.

rach domain is defined as A-KIND-0F (AKQ)

ancther domain; this stiructure forms the

basis of the domain lattice. The

interpretation of the lattice structute is

that, unless specifically prohibited,

properties (of all types) from higher

level domains are inherited by lover level

ones.

The structure of knowledge in the

system is highly constrained by two

mechanisms: types and constraints. tach

AUTOMATIC PROGRAMMING

element of & tuple must be of a type

acceptable for that argument as specified

in the definition of that kind of tuple.

Like dorairs, types are defined by AKO

relation and form lattice:. (lhis

structure is very similar t APL {£3].) An

element of & tuple is acceptable jf its

tyre is the same as that specified in the

tuple definition or 1If its type is a

lattice descendant of Lhe specified type.

In addition teo type acceplability, the

elements of a tuple must al<o satisfy

arbitrary constraints specified in the

ruple deflnition. Thesc constraints are

checked at the «<time that the tuple is

added to a domain,.

A domain consists of typcs (objects),

actions, relations, constraints, ruvles of
inference, and instantiations of all cof
the above. Toaether with the type and
constraint mechanisms for tuples, this
knowiedae of the kinds of information
contalned within a domain renresents the
syntactic basis used by the Domain

Acguisition module to construct and modify

ts Script, and nence its dialogue with

the user,

Precise Mode!

The Precise Model is the restatement

of the wuser’s problem in the programming

lanqguage AP/ [4]. This lanauage is an

extension of LISP [S], whick supports

assoclative relational data bases with

domain comnartmentalization, strongly

typed varijables, compound pattern matches,

and failure control. Strong typing and

compound palterns are especially important

in simplifylne the system’s writing of

. he Precise Model by minimizing the

transiation petween it and the Loose Mcdel

and by reducing and simplifying the
cnoitrol structures roguired., in fact,
coround patterns have enabled the
elimination of backtracking and its
replacerent by o sinale FOR? lecop that

iterates throuah a set of instantiations

of the comjound pattern. It alsoc makes it

possible to apply intelligence, within the

pattern matcher, to determine how best to

obtain valid instantiations.

Additionally, MHodel Completion

utilizes only a subset of AP/1 (which is

also the implementation languaqe for the

project) to further simplify the writing

and analysi. of Precise Model programs.

The major difference is that the Precise

Mcdel utilizes no free or local varjables,

except for pattern-match variables, thac
are [nstantiated during the ratching
process, All communication between

routinez is ejther by way of explicit
parameter passinag or through data
contained in the Deomain Model.

AP/l generally allows the arbitrary

mixing of tuonles to be instantiated and

functions to be =valuated. This includes
the JunZtions AND, OR, and NOT, as we:il as

any other defined LISP functions. It is

assuined that such functions have no side
effects. Each tuple in an expression is
treated as a function and evaluated if it

has a tunction definilion. [f not, then

it is treated as a pastern to te

instanticted. Because there are no free

variables and the only local variatles are

na‘tern-match variables, the rule for
instant!atﬁon ia very simple. Any
parameter or variable unbeund at the tiire
it is encountered within o gpattern is

instantiated; alrcacdy bound variables are

left unchanced,

The value of a pattern is aiwavs the

instantiated version of that pattern if

the ratcn was syccess ful, or .

otherwise., Because no other possibilities

exist, all pattern matches return either

the Instantiated pattern or NIL. The

concept of fallure does not exist within

the rattern matcher, since it always

returns to its caller with one or the

AUTOMATIC PROGRAMMING

other of these values.

The routines (statementc) that invoke
the pattern matcher may take other actions

upon the returned value. They nmay

extract from it particular biidings or

subexpressions or cause failure when a

'L value is sturnec £rh of he

“<tatements¥ in AP/l is, in fact, a

function that uses the value returned from
fit, In

the pattern matcher as it seecs

this reaard, the ANC, Ui, and NOT
functions are no cifferent than any other
in the system.
Current Project Status

AP/ and the asseciative <data Ltasc
mechanisrs it relies on have been
irmplemented, and it has hbeen used in turn

to implement an initial version of the

l'odel Completion phase. This version is

able to take (carerully <elected) small,

sirtplie dormain and problem statements in

Loose fiodel form and convert them to

running prograns by performing a series

of structuring and proqgram bui lding

transformations that reorder the <. quments

of relations and actions, convert the

arcuments to the correct type, and till in

missinyg ones. They also fill in omitted

relations between objects, convert

BT T

AUTOMATIC PROGRAMMING

actions, Iimplications, and constraints to
precedural form, and infer implied
relations needed to mal.e sense of

structures in the Loose Mcdel.

In all cases, these transformations

are not complete. They recognize only

specific simple instances of the desired

situation. During the next year, we plan

to extend the range of these

transformations, Iinclude new ones, and

implement ar initial version «¢f Domain

Acquisition to form a complete system.

One problem in particular will be

attacked. Currently the system attempts

to make each part of the generated program

"precise” (that is, well-defined), and

stops transformino each part when this

goal is satisfied. However, In the

acenerated progra.. only certain Yprecise®
forms will occur in the cdata base, and all
those ysed muyst work in harmony with each
other. Thus only cercain "precisc* forms

should be acceptable; this set must be

determined on a global basis.

THE PROGRAMMER’S INTERFACE

The Programmer”’s Interface (PI)

addresses the general problem of creating
a syl table on-line environment for
proaramming. The amount of sottware to

10

PROGRAMMER °S INTERFACE

support such an on-line envircnment, and

the effort required to produce {t, is very
larqge relative to that needed to produce a

programmina lanquage, a fact that larqely

accounts for the scarcity of suth

programming environments. This factor was

largely responsible for the discarding of

a major language (QA4 [6]) as a separate

entity and its inclusion instead as a set

of extensions in a LISP [5] environr-nt.

The few systems that do exist (e.q., LISP,

APL, EASIC, anc PL/I) have gqreatly

benefited¢ their users and have strongly

contributed o the wjde<pread acceptance

¢f *he associated language.

At a bare mini mun, a sujtable

programning environment conslsts of

an on-line interpreter (or incremental

compl ler), an intecrated interactive

source-level cebugiing and editing system,

and a supporting file structure, More

extensive environments wvould include

such facilities as automatic spelling

correction, structural editors, tracing

packages, test case generators, docu-

mentation facilities, and so forth.

txamining several programming envi-

ronminent systems, one recogni zes a

great deal of wuniformity. Most of the

software supyporting these systems 1Is

similar in both its organizational

structure and functions. In fact, the

systems differ in detail more because of

differences in style among system

desligners than because of di fferences

required by tLhe programming :(anguages.

The P! concept attempts to expleit
this uniformity by creating a sirgle
programming environment capable of easily

interfacing wusers with a wide variety of

on-line programming languages. The Pl is

thus responsible for transforming these

proaramning languages into cystems. The
cost of providing such an environment for
a languaqe would drop from the several
man-years nov required to the few man-days
(estimated) to interface to a Pl.

Additionaliy, the existence of a comon

proaramning environnent for many different
larquages would justify including further

capabilities.

This common programming environment

provided by a PI should include facilities

for creating, modifying, storing, and

retrieving programs; on-iine debuqgging,

Including trace and break faclilities as
wvell as the facilitias of the language for
breaks;

evaluation of expressions at

modl fying the interface between routines

(via an ADVISE (7] capability); automatic

PROGRAMMER °S INTERFACE

spelling correction; remembering, mod-

ifying, and relssulng previous Iinputs;

and undolna the effects of any of these Pl

facliliities.

Sucn a ¢l has been constructed and

interfaced to the programming language

ECL [8]. The remai nder of the Pl

discussion exp'ains *ne Pl concept in

terms of this irplementea program.

The deficiencies of this particular
implementation are di scussea in the

tvaluaticn subsection.

System Archijtecture

The facilities provi ded by the

irplemented Proarammer “s Interface (Pl-1)
are based on the INTERLISP (forx riy
BRE-L ISP) system. In fact, they are

the facilities of this system, as
moc¢ified for lanqguage independence. Pl-1
itself, implemented in INTERLISP, coexists
with the facilities it invokes to provide
INTERLISP

the programming environment.

was chosen as the basis both beceuse it
already had an extensive set of

programmina tools In an accessible form

and because the structure and operatjion of
easily be altered to

the tools could

operate as required for a Pl.

H

it

R

PROGRAMMER S INTERF ACE

The system structure Is shown in
Filgure 1.1. The ARPANET (9] Is used as the
communi cations mechanism between Pl-1 and
the user’s language processor, a cholce
which has three advantages. First, it

allows Pl-1 to be Interfaced to any

lancuage processor available on the

O

Store command
in history

Who should
procrts it?

y

Perform
action
Put value Ne¢ User's
in histor user languoge languange
Y compcnent ?
Echo
suppression
Y
ARPANET ARPANET
]
Generate
output User's languoge

processor

Figure 1.1 System architecture

12

ARPANET, independent of what machine |t
runs on. Second, thls interfacing can be
done by Pl-1 without the krnowledge of the
langitage precessori thus no modl fications
to the language processor are required.
Finally, the use of the ARPANET greatly
simplifies implementing the fntercon-
nection by allowing external character
strings to be wused for communi cation
rather than internal data structures with

the attendant incompatibility problems.

Three properties are required of a

lanquage processor to be used with a Pl:

1) A way must exist to form a coroutine

linkage between the language
processor and the Pl Dy
interconnecting their I/0 ports.
This :ype of linkage Is discussed in
detail In Ref. 10. with PI-1, the
ARPANET provides this linkage. Thus,
for PI-1, any lunguage processor

avallable on the ARPANET satisfies

the first requirement.

2) It must have an on-line evaluator
(either an interpreter or fast
compiler) and be able to field b -eaks

or errors vwithin a computation.

3) It nust be able to evaluate arbitrary

forms in that languaqge ejther at

breakpoints or at the top level.

Pl-1 beglns processing user input by

storing it in a history list used by the

Proarammer ‘s Assistant [7] (an INTERLISP

subsystem) te retrieve, edit, group,

rejssue, or undo previous commands. pPl-1

then 2xamines the [nput to determine
whether it should be processed by an
INTERLISP facility or by the user’s
language processor. Basically, envi-

ronment-type activities, such as loading

files, editina programs, advising a
function, etc., are performed vithin
Pi-1, while expressions in the wuser’s

lanauaqge to be evaluated are passed to the

lanouaqe processor.

If the user’s input is intended for

his lanquage processcr, it 1is passed

across the ARPANET to that lanquage

processor. Any output generated by the

processor |5 recelved across the ARPANHLT.

again by PI-1. It supprecses the echo of

the input and passes the output to the

user, extracting from it the Yvalue" and

putting It into the history list for wuse

by the Programmer s Assistant.

If the user’s i nput is an

environment-tvpe comrand and should be

performed within Pl-1, the appropriate

facility 1{is Invoked. In simple cases the

PROGRAMMER ’S INTERFACE
operation completes, returns a value that
in the history, and another input

is put

is processed. In more complex situations,

some interaction is ‘equired during the
operation with the user’s language
processor; this is acconmplished by

dynamically qenerating a series of Inputs

for the languaqe processor that will have
the desjired effect or return the desirec
Information. These are passed throuah the
communications mechani sms to the

processor; its output is captured, and

either the success of the modifications Is
information is

verified or the desired

extracted. Any number of such cycles may
be required before the Pl-1 facillty
completes its processing of the user’s

cormand. As an exarmple, consider the

loading of a file. As the function

definitions are read in, they are stored

as a property of the correspondinc atoms

to be wused by the Pl-1’¢c editor for any

modl fications recquired later. The

function definiticns are also passed to
the lanquage processor so that it can use
for e alvation.

these Thus, one cycle is

required for eacn function defired in the

file.

PI-1 malntains a cepy of all
furctions defined by the user, and this is

used by Pl-17s editor when the user alters

13

%
2
5
:
;
]
s

Wi ik

4 RUE L

:
€
E

j T T T

4 Ll it P e 4

| it w8 U L it o

PROGRAMMER *S INTERF ACE

the definition. Whenever this definition
changes (by redefinition or through
exiting the edltor), the resulting
deflinition 1Is passed to the language
processor as a nev deflnition of the

function.

Interfacing a Language to a Programmer’s

Interface

Most of PI-1 Is language-indep...cent,
but the folloving portions must be
modified to accept a new language: syntax
modi ficatlon, synchroni zation, proqgram

writing, and debugglng.

The INTERLISP editcr used by PI-1 s
struectural rather than strina-oriented.
To be effective, the text it is
manipulatlirg must have a structural basls.
The syntax modificatlon routines are
responsible for introducing the structure
Into the user’s languace (only for use
within PI-1). This structure Is of two
forms. First is the grouping of
characters into lexical units. The user’s
language may have very different lexical
grouplng rules than LISP, and the syntax
modi flcation package Is responsible for
the lexical analysis. Second, the lexical
units thus produced are grouped Into

larger units by the use of parentheses.

These units can be nested within one
another to form the familiar LISP
S-expression structure. The designer of
the syntax modifier must decide where to
introduce this structual grouping. In
ALGOL-11 ke languages, [t would be natural
to group the lexical units of a statement
together and qroups of statements within
blocks together. The structural grouplings
selected are j[ntroduced jnto all program
text Input by the user and employed by him
to direct the editor in its modifications
of this text. When this text is passed to
the lanqguage processor, those structural
grouplngs artificially i ntroduced ter
edliting pur poses are removed before

transmi ssion.

PI-1 and the language procassor must
be kept in synchronization with each
other. Logically this Is very simple; it
!s accomplished by having PI-1 walt untt)
the lanquage processor has completed
evaluating the previous |nput before
glving it another. This situation s
signaled by the language processor’s
attempt to read the next input.
Unfortunately (due to a deficliency in the
netvork protocol), this Information {s not
avallable. [herefore the language

processor’s state of readiness must be

determined by examination of its output

— gﬂ'}vwﬁf.m(l":%:t‘.

| Atinudh il ik i L

=T

stream., Fortunately, most on-line

lanauage processors explicitiy Inalcate
thelr readiness for more I nput by
providing the user with a Prompt

character. The language processor’s
output must be scanned for this character,
and this actjon is used as a
synchronlzation mechanism hetween Pl-1 and

the language processor.

Several facilities within PI-1, such

as Break, Trace, and Advise, cause
additional statements to be written Iinto
the user’s program for evaluation at
runtime. The Interfacer of a new language

must <~ecify the form of these additions.

Pl-1 contains many advanced debuqgaing

capablilitie®s not found in most language
processaors. All of these aids are based
on information qathered during execution
or at a breakpolnt vithin the procram. To
use these facliities, the desiqner of the
lanquage interface must supply rout!ines
that provide the basic Information on

which these debugging aids arc bullt.

Pl-1 was implemented and debugged In
approximately three weeks, including the
languaye interface to ECL. Although no

other language |[nterfaces have yet been

built, It is estimated that an Interface
language counld be

to another sultable

PROGRAMMER °S inTERFACE

designed, Implemented, and debucged in

less than a week.

tvaluation

The significance of ths Pl effort

lles neither in the particular Interface
provided between INTERLISP and ECL nor In
the extensive capabilities provided the
user, but rather in 1) the observation
that very little cf the interface jtself,
or of the capabilities provided, is
| arguage-dependent; 2) the recognition
that the programming environment can be
effectively split Into an Yenvironment®
part. anc an execution and evaluation part;
and 3) the experience gained from building
such & syster and interfacing a langquage

to it.

PI-1, however, suffers from a number
of deficiencies, the most Import. :t of
which is the use of already existing tools
in environments more general than those
for which they were designed. This was
most notable in the use of LISP s editor
for nonstructured text (making it

necessary to i ntroauce structure by

parentheses) and the requirement to

replace LISP’s |nput routines to provide

the proper lexiczl analysis for the
interfaced languaqge. Both of these
15

7

o e e o T

PROGRAMMER °S INTERF ACE

problems could be avcided ina Pl If it

used the syntdx description of the
language to gquide the input and the

editing and display of programs.

While one of the strengths of the PI
concept is the split between "environment™
and evaluation, this split introduces
the problem of communi cacion and
synchroni zation, for each part must keep
the other informed about changes it makes
that affect the other, In PI-1, this
communication and s'/nchroni zation was
partial and clumsy. The flow of
information from the ervironment to the
evaluyation part was adequate, but the
reverse flow was not. The need to
communicate to another program suitable
explanations of the state of the
evaluation, the cause of the efror, or

even that an error occurred, vas simply

not envisioned or planned for.

PI-1 has thus demonstrated that a
moderately integrated Pl can be built
whose facilities are far beyond what s
typically avallable at a fraction of the
cost. However, development of a highly
integrated Pl _will have Lo awvait a
better understanding of the functional

requirements of a language processor In

such an environment.

16

Although the P! has been |nterfaced
to oniy one language (ECL), and although
it contains only a small fraction of the
capabilities wultimately desired, it |Is
having a major effect by acting as a
prototypc for the NSW described below
{11,12), wvwhich is belng undertaken to
develop this wunderstanding and provide a
single, common, comprehensive progrimming
environment interfaced to a wide variety
of languages running on many different
machines communicating through a netvork.
New languages or machi nes coulda be
interfaced to the system at a fraction of
the cost of providing a separate
programminc environment. Widespread uscge
would Justify the expenditure of wore
resources to auament and improve th:
capabilities provided. Such a Pl could
free users from having to develop their
programs using only software available on
their own machines and could provide a
much more comprenhensive and coordinated
software

developnent package than s

currently available.

THE NATIONAL SOF TWARE WORKS

The production and malntenance of
large proarams is still an outrageously
expensive activity; the costs are not only

high, but also Jdifficult to predict or

control. Aside from the mani fest benefits

derived frem the use of compllers and

(some) operating systems and a certain

amount of improvement experienced by

programmers who code jnteractively, it is

not at all «clear that the last twenty
years of research and developinent in
programmi ng technolog have made any
serious inroads upon the problem. This

situation is particularly interesting in

the light of a general suspicion that, in

principle, the problem ought to be eased

by the creation of better software to

support the program production and

maj ntenance process, for surely a qreat

deal has been spent in the effort to

invent Just such software. The reasons

for our failure are arguable; a variety of

hypotheses have been put forwards

® That the necessary tools--or, at lecast,

many of them--exist in the research

centers but are not being effect-

ively dellvered to the practical

programming communi tvy.

® That feedback from the user community

has insufficient Iinfluence on the

research laboratories, SO that

research emphasis Is unrelated to

user nzeds.

NATIONAL SOFTWARE WORKS

® That the necessary tools exist, but are
di ffused over a variety of hardware

in many physical locacions, the

problem beine that of difficulty of

access.

fach of these hypotheses--and the
list may readily be extended--doubtless

contains a certain amount of truth, and

collectively they surely suggest that

dramatic improvements in the way programs

are built are less 1likely to come from

marginal lmprovenents in present tools (or

the invention of some magical newv one)

tharn from better metnods cf tool access

and delivery and Letter comrunication

between research laboratory and end user.

The idea of a National Software wWorks

(NSW) on the /MPAKET [9Y] arose fairly
naturally from these considerations. 1f
some number of end users were put on
the netwvork, and enough additional

off-the-shelf software were brought up on

the network to supply a complete
set of conventional tools--col.;i ers,
documentation aids, debugging systems,

etc.-~-for normal program development work,

some useful results might be expected to

follows

8 The user would I[Immediately have more

convenient access to standard tools

17

NATIONAL SOF TWARE WORKS
unavailable on his owvn hardware (or

seldom available {f his hardware is

often tied up running production).

® The user would find it easy to access
nove | tools In use at researzh
facilities presently on the network,

but not otherwise avallable to him.

® (Contact between the research labor-

atorles and the user community would

naturally Improve.

In sum, the NSW might both

immediately Improve the present situation

of the user and, in the long term, provide

an effective vehicle for the communication

of need from uyser to researcher and of

responsive tool frcm researcher to user.

It was soon recognized, however, that

a view of the NSW as a mere lash-up of

tools that happened to reside on the

ARPANET would be extremely short-sighted.

The fact that all programmer contact with

tools would pass through a common

communication mechanfsm with i mense

computing resources created a golden

opportunity for the study--and perhaps

control--of the whole process of creating

and maintaining large programs. This

thought was partizularly attractive In the

Iight of our feeling that one of the most

weakly supported areas [n the production

and maintenance process is project

management--a tool that keeps track of

what 1Is going on, relating particular

programmer activities to each other and to
the overall project.

The NSW Environment

Against the background of our feellng

that serious progress In mnaking the
production of larce prcarams a more
rational process wl(ll come less from the

polishing of parti~ular tocols than from a

frontal attack on the issue of improved

access to tools and centra1lzed management
of the vast inventory of text floating
around a large project, the logic of our

NSW stratecy becomes easy to see,

® Jt Is our intent to put a project’s

programmers on-line to the ARPANET,
wvhich has the I[mnediate effect of
giving them access to many tools
unavai lable on thelr own locai
hardware.

8 We will supply lInteractive editing
packages, both a general text editor

and editors that "sp2ak® one or two
common programming 1anguages. The
effect of such tools in facilltating

program preparation and modijfication

| i i b s

i

is too well known to require any

defense here.

® Projects will be able to store these
files on very Inexpensive on-line
mass storage devices (such as the
Datacomputer (141]). This should
relieve a considerable part of
a project’s local off-line file
maintenance probliems and facilitate
load-sharing when the project’s local

computer s busye.

® .\ Flle Manager will always be on-line
monitoring the content and structure
of the project’s files and keeping
the books ip to date, as text pieces

are created and manipulated.

The presence of the first three
facilities will permit the project to
conduct Its business more or less as |t
does ncw (using the same languages,
the same tools, etc.) with certain
improvements in ease of tool access and
forel gn hardwvare access, edliting, and file
management. In addition, the project may
at lts option experiment with using
di fferent tools scattered around the

networke.

The fourth facility opens the door to

some genuinely new ways of controlling

NATIONAL SOFTWARE WORKS

projects In the future. Tc begin vith, a
falrly poverful query syscem will be
provided to - ansver questions abcut any
filed entity: what ([t is, where it came
from, what other entities depend on |t,
etc. Later we will introduce a variety of
experimental tools for project control
that use the File fianager”s books as thelr
primary data or that use the fact of the
File Manager ‘s exlstence as thelr means of
irvocation (after all, the latter provides
a singie control point "awakened" every

tire anything interesting happers).

Supporting Technolcagy

Virtually all multlprogram operating
systems have attempted ro create a
suitable proarammi ng environment by
providing a set of tools. Some merely
provided a library from which teools could
be selected one at a time by the
programmer. Others, like MULTICS, CP-67,
VS, and TENEX, have provided an on-1ine
environment for program bul lding and

debugging.

All of these systems have been builit
on a single computer, which has severely
iimlted their capabillity to provice the
type of environment described {n the

previous subsection. In fact, unti!

19

NATIONAL SOFTWARE WORKS

recently a combination of several such

hardvare and software technical problems

existed that prevented the conception

and Implementation of this type of

environment. These problems and their

solution In the NSW are discussed belov.

Single-machine impleaentation of all

tools. Computer networks, such as the

ARPANET, have establlished a communication

mechanism whereby cooperating programs in

di fferent machines can func>'on together

as a single system, The technical basis

for eliminating these problems |s
provided by computer networks, centralized

mass storage, the Pl [14] described in the

previous section, ACTORS [15], and
executicn machi nes (see the System
Description subsection below). The Pl has

utilized this network technology io create

an on-line programmi ng environment

combining tools that run on different

machines.

Nonintegrated'"tool-at-a-time"systems.

Current systems elther segregate thelr

tools into noninteracting compconents

invcked one at a time or provide highly
complex Integrated versions of these, with
the Interactions between them built Into

the systems themselves, The type of

20

programming environment ve envision

requires that actions or events in one

part of the system perineate the rest to

malntain consistency and coordination

between the components. The ACTORS

concept, by externalizing and removing the

control and communication between thre

component parts, gqreatly simplifies the

construction of an integrated and
coordinated sy<' em.

Machine Independence. Although tools

running on different machines may be

integratad Into a single tool, the

technology does not exist to run a single

program on several di fferent machines and

obtailn the same results. Therefore,

software being produced must be executed
and tested on the machine for which It is
intended to run in production mode.

.

If the softvare environment is to be used

Thus,

to produce programs for more than one

machine, each of these must be connected

through the computer network and a small

portion of the system replicated on each

execution machi ne to provide for

translation and run-time moni toring

capabllities. The rest of the software

environment Iis common and can be shared

independent of the machine for vhich

execution Is intended.

T

Language Independence. Currently, If

softvare is to be produced for more than

ore lanquage, then the tools must either
be duplicated In separate and distinct
integrated programming environments or
else avai lable in a noni ntegrated
tool-at-a-time mode. The Pl has shown
that mats., of these tools are
language-independent or only slightly
language-dependent and has demonstrated
how such tools can be extended to handle a
wvide set of programming languages. It
utilizes the programmina tocls (editors,
file systems, debugaers, Programmer”s
Assistant (73, etc.) developed for cne
language (LISP [5]) for the development
of softiware in other languages (e.g., ECL
(8. It has established interface
requirerents for cother lanquasges that
would greatly reduce the effort reguired
to transform these !rom simple interactive
procramming lanquages into an extensive

programming environment.

Econumics. In addition to the costs
of <creating an appropriate programming
environment addressed above, several
economlc factors currently limit the
yse and utillty of existing programming
environments. Most machirnes are sized
for thelr production, not developnment,

requirements. Hence, typically they

NATIONAL SOFTWARE WORKS

contain neither enough mass storage for

the files that would be requlred in an
on-line environment nor enough memory <o
support both the code beling developed and
the tools for that development. Also,
access to the system is limited by the
priorit.es of the production worklcad.
Networking and economies of scale offer
solutlons by providing access to a system
specifically designed and sized for
software dJdevelopment and on which ne
production workload ex.sts. Charges would
be based on usage and development costs
for the system, spread over a much wider
community of users vecause of the
lanquage- and machine-independence aspects
of the system. In additicn, very cost-
effective mass storage can be provided by
the NDatacomputer, which provides a
trillion-bit on-lire memory at a cost of

about a dollar per megabit per year.

System Description

The hardware for the NSW, snown In
Figure 1,2, consists of three logical
components jnterconnected by the ARPANETS
mass storage, the execution rachine, and
the interactive machjne. The first
consists of the Datacomputer, compcsed of
a trillion-bit store and a file management

system. The second, the execution machine,

is a set of machines responsible for

2

NATIONAL SOFTWARE WORKS

running the program being developed

and for collecting dc:a on its execution.
For each program being developed, the
execution machine chosen is automaticaily
the same as the production machine for

that program. Thus, during development, a

proagram |s executed on the same (actually
a copy of the) machine it will run
on during production. This mechanism
eliminates all machine-dependence compat-
Terminals
Video Hard
system
LOCAL Y s
P
or
TIP
= Network
connection
Interactive
SYSTEM Mass \
storage
Execution Execution
machine 71 machine N
Figure 1.2 NSW hardware

22

ibility I ssues at the cost of replicating
the execution software In each machine for
which this

capabllity Is desired and

having that machine avajlable in the NSW.

On the other hand, it provides the grcat
advantage cf allowing the final component,
the interactive machine (or machines), to
be independent of the choice of production
machine, thereby allowing It to handle a
wider set o Implementation efforts. The

interactive mac ‘ine contains most of the

system’s software and provides all of the
facilities of the NSW except those
described above.

The ARPANET not oniy interconnects
the NSW components, but also provides

access for wusers to the system and

supports a variety of terminals. Howvever,
the NSW will be oriented tovard the use of

high-capaclty video termlnals.

Although the system |s distributed

across the ARPANET, it 1Is organized so

that nejther the us2r nor the component

software modules are aware of this. The
user sees o'y a single {ntegrated
facility. The framework enables modules

either lec2lly or remotely connected to

communicate without knoving each other’s

precise location.

System Growth

Tnough we have described the N3W
sys*em and its tool Interface at length,
ve have not dlscussed the tools

themselves, partly because we believe It

Is the celivery and access system rather

than <cpecific tools wvhlch Is significant,

partly because mary of the tools to be

I ncluded already exist, and mainly because
NSA does not plan cn beco.ning involved in

a massive tool development effort.

Rather, NSW has ueen designed to create a

comperitive marketplace in which vendors

make tools available uvn a wusage charge

basis. Such a marketplace has advantages

for all concerned, Because the NSKW will

evencually have a verv larae user base,

vendors wlll have a wider audience from

whlch to recover thelr developm:nt costs,

More im:.rtantly, .lnce the entire user

population can access and use the tools

i ndependent of thelr own production

hardware (unless the tool is Jdependent on
the executlon machine), a single
Jmplementat!on ls sufficlent. The

NATIONAL SOFTWARE WORKS

Implementer ls free to choose the most

cost-effective rachlne fcr development and

execution of his tool. Users are able to

choose the pest tool aval lable and are not

restrlcted to software runnlng oun thelr

own hardware, Finally, because NSW does

all the accountlng for all wusers, ¢t -

decision of which tools to Install in tye

NS#» aid which ones to use can be

gistributed. Vendors who pelieve in the

economic wviability of thelr tools can
Install them and make the use: avare »f
thelr avallabillty. Users can, on an
indivlaual basis, decide whlch tool Is

mo.t appropriate for their own needs and

can try new tools vitnout any

administrative arrangements.

1S!, together with other members of

the ARPA communlty, was lnstrumental In

the conceptlon and design of the Natlonal

Software Works. Durling the remalnder of
the project, we will provide technical
coordlnation and flannlng for its

develcpment and growth,

23

14

13

15

24

REFERENCES

Balzer, R. M., Atuomatic Programming, USC/Information Sciences Institute, RR-73-1
(In progress).

Balzer, R. M., "A Global Viev of Automatic Programming®, Proceedings of Third
International Joint Conference on Artiflclal Jntelligence, Stanford University,
August 20-23, 1573, pp.

Prolect MAC Progress Report X, July 1972-Jul I973 The Massachusetts Institute of
Technology, Cambrlidge, Hass.. T?W;. pp. 17&=1 ’

Balzer, R. M., AP/1: A Language for Automatic Prcaramming, Usc/Information
Sclences Institute, Rﬁ-73—|§ !in progress).

Teltelman, W., D. G. Bobrow, A. K. Hartley, and 0. L. Murphy, BBN-LISP TENEX
Reference Manual, July 1971.

Rulifson, J. F., J. A. Derksen, and R. J. Waldinger, QA4: A Procedural Calculus

for Intuitive Reasonling, Stanford Research Institute Artificial Intellilgence
Center, Technlcal Note 7%, Hovember 1972.

Tejtelman, W., "Automated Programmirg: The Proarammer’s Asslstant”, AF1PS
Conference Proceedings, Fall Joint Computer Conference 1972, Vol. 41, AFIPS
Press, Montvale, N.J., 1972, pp. 917-921.

Wegbreit, B., "The ECL Programming Systems," AFIPS Conference Proceedines, Fall
Joint Comy er C(Conference 1971, Vol. 39, AFIPS Press, Montvale, N.J., 1971,
pp. 253-262,

Roberts, L. G., and B. D. Wessler, %“Computer Network Development to Achleve
Pesource Sharing,"™ AFIPS Conference Proceedings, Spring Jolnt Computer Conference
1970, Vol. 36, AFIPS Press, Montvale, N.J., 1970, pp. 543-549.

Falzer, R. M., Ports: A Method f~- ODynamic Interproaram Communication and Job
Control, The Rand Corporatlon, R-605-ARPA, August 1971,

balzer, R. M., T. E. Cheatham, S. Crocker, and S. Warshall, The Natlonal Softwvare
Works, USC/Informatlicn Sclences Institute, RR-73-18 (In progress)

Balzer, 2. M., 1. E. Cheatham, S. Crocker, and S. Warshall, Design of a National
Software Works, USC/Information Sclences Instltute, RR-73-16€ (In progress).

Datacomputer Sofiware Archlitectyure, Datacomputer Project Working Paper 5, February

1972, CZomputer Corporation of Amerlca.

Balzer, R. M., A Language-Independent Programmer’s Interface, USC/Information
Sclewces Instltute, R&-7§—|5, March 1374,

Hewitt, C., P. Bishop, and R. Stelger, "A Unlversail Modular ACTOR Formalism for
Artificlal Intelligence,® Proceedings of the Third International Joint Conference
on Artificlal Intelligence,” Stanford ~ Unlversity, August 20-23,
pp. 235--74S.

Ww«

PROGRAM VERIFICATION

PROJECT LEADER: Ralph L. London
RESEARCH STAFF3 Raymond L. Bates
Peter L. Bruell
Lavrence M. Fagan
Donald 1. Good
RESEARCH STAFF SUPPORT: Betty L. Randall

RESEARCH ASSISTANT: Donald S. Lynn

®The concepts of program verl fication are actually the cornerstone of any
deeper understanding of algorithms, vithout which the programrer would have no
other tool besides his own Insufficlent intultion.®

Niklaus Wirth, Systematic Programming:?
An Introducticn, 1973, p. Xil.

ez & 3=
bcth programming met hodology and the
semantlic definjtion of programmi ng
INTRODUCTI languages.
To verify a computer program means to srogram verification is not.
demonstrate, by a mathematical proof, the inexpensive or rapldly completed, but it

consistency betveen the program and the need not be an additional cost In softwvare
specl flcatliuns or documentation of what projects. In Boehm’s data on current
the program Is to do. Pirogram softvare practices [1], It s especially
verification can have 2 great Impact on relevant to note the large amounts of time
the construction of reliable software by and effort (45 to 50 percent) devoted to
assuring that programs actually do what Is testing activities, much of which can be
intended and by ultimately reducing eliminated by verification procedures.
sof tvare coste. In addition, oprogram
It Is now technically possible to
veriflcation helps to influence the design
verify smail programs auvtomatically.
of programming languages. It also serves

Technliques and experience exist to permit
as an important test-bed for advances Iin

—r

PROGRAM CONSTRUCTION

the computer-assisted veri flcation of more
amblitious programs. If necessary, it 1Is
even possible to verify still more

ambitious programs manually.

A PROGRAM CONSTRUCTION AND VERIFICATION

SYSTEM

The Program Verification project Is
bullding an integrated system o/ software
tools to ald In the design and
construction of verified programs iind to
experiment vith new speci fication
languages, structurlng methords, and proof

methods. V¥e fully expect to demonstrate

the system’s feasibllity and practical

applicabllity on significant, real
progr ms.
Previous experience with actual

proofs of a varlety of programe and with
varlous experimental progrem veriflicatlion
systems supparts two conclusions: (1)
automati< or Interactlive program verifiers
can be of significant help in proving
actual programs, and (2) the best way of
exploiting existing program proving
methods Is to develop a program and Its
pr oof simultaneously, that Is, by
considering the proof at each step of the
program design and Implementation process

rather than vwriting the program first and

26

then attempting to prove it. In short, if
ve are to prove programs of signlflicant
size and complexity with current methods,
those proarams must be designed to be

proved.

Programs can be designed to be proved
because current verification techniques
are perfectly compatible with currently
advocated methods of program construction
(for example, the concepts of structured
programming, levels c¢f abstraction, and
their numerous aliases). One can verlfy
each elaboration of a developing program
at the time of elaboration rather than
wajt to verify only the final versicn of
the program. The wuse of this approach
should result In a structured, modular,
and understandable ver]flcation. An
encouraging example |s the verification
(2] of a structured algorithm of several
levels. The proof follows that structure
exactly. Smail changes to the algorithm

will mean corresponding smal) changes to

the proof.

Currently, it Is not iIntended that
the program construction and veri fication
system include any significant automatic
programming of code synthesis facilities.
The system s not expected to ald In

selecting an algorithm for accomplishing a

T T———

task or in choosing data and control
structures. The human programmer still
retzins primary responsibility for
designing, and for proving, his proaram.
The purpose of the system s to provice a
set of facilities that make It possible
for the programner to interactively
develop, from a precise specification of
his problem, both a program and a proof
that the program solves his problem. It
Is éssumed that the programmer is highly
knowledgeable both In his problem area and
in the methods of program proof supported

by the system.

The system focuses on providing the
programmer with three fundamental and
Interrelated capabilities: program
construction, program execution, and
program verification. The program
construction part of the system provides a
basis for ds=signing the program on a
structured, segment-by-segment basis while

maintaining the integrity ¢. the proof as

the program is expanded and modl fied.

The program execution capability 1is
supplied by an interpreter that provides a
sophisticated debugging tool along
conventional lines, By this means, faulty
programs can be detected without using the

conslderably more expensive verification

PROGRAM CONSTRUCTION

machinery. The verjfication part of this
system is based on the conventlonal
inductive assertion method: generate
verification ccnditions, simplify them,

and prove them.

The spirit of tne veri fication
component, as wvell as the entire system,
Is to provide automatic tools vhere
practical and to rely on linteractive
capability for manual intervention
otherwise. This philosophy Is motivated
by our bellefs that for real programs,
(1) large parts of the total proof can and
should be done automatically, and (2) in
the foreseeable future, some parts will

have to be done manually.

CURRENT STATUS

Qur currently running system consists
of a text edltor, a program and
specification parser, a programn
interpreter capable of running both actual
and symbolic data, a verl fication
condition ¢enerater, a simplification and
substi tution package, and a theorem

provere.

The program verif! ition portion of
the system |s bascd on decomposing the
verifi-ation task as snown jn Figure 2.1.

The Inputs are (1) the program to be

27

CURRENT STATUS

verified and (2) the specificatlons and
assertions to which the program Is to be
shown consistent. The verirvication
condition generator or lemma generator,

Invoking the syntactic and semantic rules

of the programming language, reduces the

Specifications

Progrom (assertions)
‘ferification
Condition
Generator
Lemmas to
‘ be proved
e
Simplificotion Lemmas shown true -
lemmas still
in doubt
Theorem Lemmas showr true
Prover -
Lemmas . til!
in doubt

L

Figure 2.1 Decomposition of the verification task

veriflcation task to proving a derived set
of mathematical lemmas; the program [tself
has essentially been eliminated. Large
segments of the derived lemmas are proved
by relatively ctralghtforwvard simpli-
fications and s - stitutions involving
global alc¢ebraic facts, global Bouolean
facts, and problem-spec]fic facts. The
remaining lemmas are then passed to an
interactive theorem prover that invokes

glcbal, generally useful theorems as well

as probiemspecific theorems.

The human user, represented by the
stick figure, can guide the verl fication
interactively. He is an importanc
conponent of owur verifjcation system--in
fact, one that distinguishes our system
from most others. Such interaction is
being used successfully in at lecast one
theorem prover [3]). If, as we expect (and
are begli nhning tc demonstrate), the human
is left to supply to the system only a
minimal amount of crucial advice and
hunches to complete the proofs of the
remaining lemmas, trnen this will be an
appropriate and cost-effective use of the
human user in the verification task. of
course, ensuring that the sys%em does not
in the end ask the wuser to do what he

considers toc obvious is a nontrivial

problem. Making the human an [mportant

Lt e 0 e o B bt EPIRHL e L L

component seems a proper response to the
genuinely open-ended nature of the facts,
theorems, and deducticns needed to verify
real proygrams. If we wish the system to
be abl: to bhandle a particular type of
reasoning or set of facts, ve can
hopefully add the appropriate capabllity.
In the meantime, however, the system/human

comblnatlion can together verify programs.

Note In Flgure 2.1 that the human can
advise both the simplifier and the theorem
prover, In particular, by supplying
additional facts and theorems to be used.
He can also change either the orjginal
proaram or the specifications, or both, if
that seems approprliate in light of any
false lemma (i.e., a counter-example has
been found) or a lemma whose truth or
falsity cannot be determined (l.e., the

can’t tell cuse).

A more detai led view of the
verification part of the system [s shown
in Figure 2.2. Input programs are written
in an Interesting subset of the fre-
quently-used Algol-llke language Pascal,
to vhich assertions have been added.
The input speclfications and assertions
are wvritten as (Bcolean) exp-essions of
Paccal, augmented by implication,

equivalence, and limited quantification.

CURRENT STATUS

Because function calls are permitted In
expressions, thls assertion language Is
theoretically adequate. In practijce it Is
somevhat i{nelegant, but not Inconvenient.
Other notations for assertions are

beginning to be developed and implemented.

The Input Is converted to a prefix
representation used throughout the rest of
the system. One use [s as Input to the

interpreter for Pascal, permitting

Progrom Specifications

Parser

Prefix representation

/N

Verification
Condition |M0l’pre'hr
Generator (symbolic)

. '

Lemmas sufficient Algebraic
to varify progrom execution

Theorem |

Prover Simplmcaﬁm

Figure 2.2 Overall orgonization of currently
running verilication system

o

"

CURRENT STATUS

algebraic execution, in addition to the
usual numeric execution. One use for the
algebralc executlon Is to assist In the
(human) construction of the assertions
needed in verification,

although, of

course, some piogram construction
strategies suqcest the assertions will be
known before the actual program code is
written. The interpreter can aiso serve
as an alternative basis for a veriflcation

cendition generator.

The otier use for the prefix
representation is as input to the
verificatior conditior generator, the
output of which serves as input to the
simplifier and tc the theorem prover
(wvhose function and use were described
above). The verification condition
generator is based directly upon Lhe
axlions and rules of inference that
constitute the definition of Pascal. We
also have available a standard Pascal
compiler, an interesting convenience but

not a necessity to the verffication

system.

A different view of the construction
and vcrlification system, iIn Flgure 2.3,
shows additional relationships of the
components and emphaslizes the outputs of

each.

30

The construction and veri flicatlon
system s procr ammed in Reduce [4] and is
therefore Lisp-based. Besldes the virtues
of programming in a high-level compliable
language, Reduce provides three |[mportant

advantages. First, nearly all of the

program
ond

soecifications
changes to

— el Pfogfa“
and specs.

new program
and specs,

syntax
errors

internci
prefix
semantic
inconsistency

execution
results
from interpreter

verification
conditions

— bugs <=

simplified
ve's
false or

S S— unpfoved
ve's

proved

vc's

VERIFIED
PROGRAM

Figure 2.3 Outputs from components of program
design ana verification system

8t TeAu e i s

ket

T

simplification and substizution is

provided wvith minimal effort by the

existing Reduce capabilities; the
remai nder is provi ded by easily
constructed Reduce procedures.: The

pattern --matching capabilities of Recuce
are exploited to permit the easy input of
additloral, user-defined sinpl:fication
rules. Second, Lisp programs wvritten
indepencdently of Reduce can be made part
of the system; this «capabllity has been
explojted to advantage. The previouslv
existine verification condition gener-
ator [5) was impcrted via ARPANET and
essencially plugged into the system. The
interactive theorem prover [3] that we
have incorporated into the system tcok
more effort because it first had to be
converted from one Lisp system toc another.
Third, because Hearn has inve: ted
considerable resources in making the
Reduce system available on a wide class of
conputers and operating systems, the
correspnnding avallability of the
verification system will be achieved
merely by keeping the programming of the

system In Reduce.

CURRENT STATUS

Currently, the verification system
can verify an interesting class of small
programs from the program wverification
literature, from vari ous programming
manuals anc texts, and from our own test
examples. furthermore, the wuse of such
simple structuring notinns as proccdures
and functions eases the verification task.
Although this system has not yet verjfied
all of the programs of other existing
program verifiers, we are nevertheless
encouraged by the power inherent in Reduce
and in the theorem prover that we have
Just beqgun to exploit. wWe remaln
confident that our-system will be able to
verify such programs shortly, and that tne
system will be an extremely flexible and
valuable asset in experimenting with
assertion lanquaqes, structuring methoas,
and proof metinods for verifying
significant, real programs, such as a
compi ler for Pascal, an editor, parts of
the verification system itseif, or

appropriate application programs.

N

TN TR

32

REFERENCES

Boehm, B. W., "Software and Its Impact: A Quantitative Assessment,* Datamatlon,
VO'. 19. NO- 5. “ay ‘973. PPe ~8"59.

London, R. L., Proof of Wulf’s Prime Slieve Program, contained In W. A. Wulf,
"ALPHARD: Towvards a Language to Support Structured Programs,® Computer Sclence
Department Report, Carnegle-Mellon Unlversity (In progress),

8ledsoe, W. W., P. Bruell, "A Man-Machine Theorem Proving System®, Third
International Joint Conference On Artificlial Intelilgence, Advanced Papers of the
Ccenference, 1973, pp. 56-65.

Hearn, A. C., "Reduce 23 A System and Language for Algebralc Manipulation®,

Proceedings of the Second Symposium on Symboiic and Algebraic Manlpulation, ACM,
1977, pp. 128-7133.

Igarashl, S., R. L. London, D. C. Luckham, ®Automatic Program Verjflcation 3 A
Logical Basis and Its Implementation,” USC/Information Sciences Institute,
ISI/RR-73-11, May 1973. Alsc accepted for publication In Acta Informatica, 1974.

i

PROJECT LEADER:
RESEARCH STAFF:

RESEARCH STAFF SUPPORT:

RESEARCH ASSISTANTS:

PROGRAMMING RESEARCH INSTRUMENT

Louls Gallenson

Joel Goldberg

Raymond L. Mason
Donald R. Oestreicher
lLeroy C. Richardson

R. Jacque Bruninga
George W. Dietrich
Rennie Duge

Oralio E. Garza
Lloyd G. Jensen

John M, Malcolm
Ronald Tugender
Martin L. Yonke

T I T T T o T T 0 o o3 o P D T S T Sy > S e S > S S e T A o T D e T R e S T D . A e i o S S e D e T e s

INTRODUC T 10N

The PRIM facility makes it possible
to easily siwulate new hardware archi-

tectures and cesians in microprogrammed

The Pregramming Research Instrument software. That Is, softwire can be

(PRIM) project has created a fully created for hardware not vyet available,

protected experimental cornuting enviren- and hardware designs may be extensively

ment with continucrs rmultiuser access. An used and changed even before the prototvpe

ARPANET-based multiaccess

system, PRIM stage of develcopment 1|s reached. This

allows each researcher to create his own snould both cut Jlead time and improve

specialized computing engine capable of decisions connected with the specijal-

beino changed and adapted to his specific purpose hardware procurement cycle.

needs. The PRIM hardware

and softwvare
To familiarize potential users with

tonether provicde a wvorking environment in

the operaticn cof the PRIM system, ISI will

vhich the user can implement his own

provide introductory seminars and an

computer in microcode and run that com-

extensive documentation packaqc. PIM

puter in his tarqgei program environmente.

user docurentation, consisting of an

PRIM can be wused to explore computer

Overview, User’s Guide, MLP-900 Reference

architecture, ‘'anquaae development, and

<pecial-purpose processor

especial relevance to bDob

use of computer equipment.

Manual, and GPM Reference Manual, is
desiagn--all of

nearing completion and should be available
selection and

to interested potential users by mid-1974.

33

INTRODUCTION

This documentation Is currently avallable swapping, and all other accesses to
via the ARPANET at IsI, directory peripheral devices,

PRIM.DOCUMENTATIDN. The PRIM Overview has
already been published and distributed
[1]. Interested individuais vill bpe
invited to a yser’s seminar, scheduled for
June, at which time PRIM will be cperating
in the environment for which it was
designed. ISI personnel vill continue to
be available to assist users and correct

bugs within the system as required.

HARDWARE

PRIM’s hardware system Js based on

two processors: the Ulgltal Equi pment

i Figure 3.1 The MLP-900
Corporation’s POP-10 and the STANDARD

Computer Corporation’s MLP-900 prototype

processor (see fig, 3.1). The POP-10 and /O b
PDP-10 | ———— MLP-900
MLP-900 share memory as dual Processors;
the MLP-300 s 3 device on the PDP-10 1/0
bus (see Figure 3.2),
POP-10 BBN Pager
pager
The PDP-10, connected to the ARPANET,
runs under the TENEX time-sharing system Memor, Memory
1 bus bus
of Bolt Beranek and Newman, [nc. on a
5 paged virtual memory, Its bprocessor 256 K four-way interleaved
1 contalns 256K words of 36-bit memory. The 36-bit memory

1/0 operations performed by T+NEX include
Figure 3.2 Basic PRIM configuration
file, terminal, and network handling,

MLP-900

The MLP-900 is a vertical-word

microproqrammed processor that runs

synchronously with a 4-MHz clock. It is

characterized by two parallel computing

engines?! the Cperating Engine (CE), which

performs arithmetic operations, and the

Control Engine (CE), which performs con-

trol operations (see Figure 3.3). The

OE contains 32 36-bit general-purpose reg-

isters for operands and 32 36-bit mask

registers to specify operana fields. A IK

36~bit high-speed auxiliary memory is

associated with the 0E. The CE contains

256 state flip-flops, a 16-word hardvare

subroutine return <stack, and 16 8-bit

pointer registers.

The MLP-900 Is accessible only

through the PDP-10 as outlined above

(i.e., the [/0 bus and cshared memory); no

CONTROL ENGINE \
(Branches, testing)

Flip/flops
256x1 bits, F.0-F.377

Pointer registers
16 x 8 bits, ¥.0-P.17

Subroutine stack
16x 16 bits, 5.0-5.17

OPERATING ENGINE
(I/Q, arithmatic, Togic)

General registers
32 x 36 bits, RO-R.37

Auxiliary memory
1K x 36 bits, A,0-A.1777

Mask registers
16 x 32 bits, M.0-~-M,17

CONTROL MEMORY
4K x 36 bits

Figure 3.3 MLP-900 configuration

HARDWARE

provisions have Leen made for direct

connection of any peripheral devices.

The Introduction »>f a microvisor

state has been of major importance to the

PRIM project. Prior to this project,

little had been done toward makling the

multitude of available ml croprogrammed

processors potentially sharable resources.
This Initial experiment goes a

long way

towvard making microprogrammed processors

videly and inexpensively available.

The majcr hardware effort was
cornducted in four broad areas:?

1) Reconfiguring the MLP-900 mainframe
for necessary expansion, Improved
reliability, better cool ing, and
improved power distribution.

2) Interfacing the KLP-~-900 to the PDP-10
(including 1/0 and memory bus

interfaces and a paging facility).

3) Creating a microprogrammed supervisor

(microvisor) state within the

MLP~%0U, with facilities for pro-

tection of the privileged resources

and appropriate communication to

change state,

4) Enhancing the user environment within

the MLP-9500.

HARDWARE

The modification of the MLP-900 and the

interface to TENEX (Items 1, 2, and 3)

vere essentially completed during the last
detalls of these

reporting period; the

operations can be found in Ref, 2.

Enhancement of User Environment

Althouch this year”s hardware effort

consi sted primarily of debugging the

MLP-900, a few hardware developmerts are

worthy of mention. These include language

boards, Control Memory Address C(ompare

(CMADRC), Virtual Meriory Address Compare

(VMADRC), auxiliary memory, and streaming

mode transters.

As oriqginally conceived, the lanquage

boards were to perform a variety of

functions for the MLP-900 relating tc the

interpretation of tarqet instructions.

ihese boarus were to be designed and

unicue'y wused 1or specific target level

lancuaaces, one board per lanquage. The

furct, ons per formed simplitied and/or

reduced the ministeps required to execute

target level instructions. ihe concept is

beirng modified to gereraljze the functien

nf the lanquaqge boards such that one set

of languaqge boards will enhance all tarcet

level langquaqges and minimize the need for

redesign and change of lanquage boards

throughout the life of PRIM. Because the

functions and registers required by

microvisor interaction and user control

are protected, two types of language

boards have been desjgnated: tne

Supervisour Language Board (SLB) and the

User Language goard (ULB). The SL3

utilizes language board outputs for task

assignments, page faults (communicating

with the TENEX system), and MLP-900 mode

control. The ULB, which Is currently a

null board, pavses data from target memory

tc the iLP-9C00 without modification or
interpretation but will «row as users’
requirements become knowri. All the

currantiy required ULE functions are being

per formed with MINIFLOW and will be

modified as speed, <pace, and logic

eventually become a factor.

lhe compare registers VMAUKRC and

CHADRC (1b bits ana 1z bits, respectively)

have been implemented as user debuqging

tonls. These reqgisters can be loaded and

compare-erablec to assist the vuvser when

debugging sortware. Unhe reqgister operates

at the i IrLulw (centrol memory) level,

the other at the tarqet (main memory)

level.

A lu2b-word (36 bits) 200~-ns

auxiliary memory has been added to the 0OFE

to be 1sed as a cache or scratclhipad. The
memor y is implerented with a Ccaar
Corporation radule identical to that wused
for control memory, and the menory boards
are interchangeabl= in all nLP-90¢
memories (control, translator, and

auxiliary).

The streamling mode (fast bleck
t-ansfers) from the PJP-1U core to the
MLP-900 is operating satistfactorily at an
averaqge transfer gtate of 330 ns (never
more than 350 ns); three-vay memory
overlap <¢an be achieved. The design qoal
was tc maximize the speed of the the
context swapping, takinc advantage of
four-way memory overlap capabilities of

the PDP-10 mermory.

SOF TWARE

There are tnree principal items of

PRI software:

® The General Purpose Microproaramring
Lanquace (CPM) compiler.

® The NHLP-900 microprcgram supervi sor
(microvisor),

® The JENEX ribP-9U0 programs, i.e., the

MLP-96U driver and ALP=-tLEC.

The basic PRIM software architecture s

shown in Flgure 3.4,

SOF TWARE

The GPM ccopiler was esentially
comp leted in ear.y 19733 for a nmore
detailed account of jts <(evelopment the
reader should consult Refs. 3 and 4. The
rajcr effort ot this year, and the major
enphasis of this section, is the
deveiopment of the TENEX software support

and the microvisor.

GPi and the GPM compile

GPM is a hioh-level machine-oriented
lanquage, written in TENEX BLISS, designed
explicitly for the MLP-2UU. As a
nich-level lanquage, GPM offers a block
structure and statement syntax sinmilar to
PL/1 or ALGOL. The specific staterent

types defined in GPM are oeneralizations

PDP-10 MLP-900

P ; Aﬂﬁmm%mmm%%wmm?

TENEX Z

EXEC 7

%.

B E L T S —" Z— — - A wme
¢ f
| me me |2 1/0 bus VLI

EXEC Driver |4 N Microvi
% v'-% § crovisor
7 \
7 z N
el §-- - §--1-- :
7 V % \
. 7 D
7 User % §
7 1 Memory Bus } User :
é orget <1 M: ode \
% Mamory croc
» IR

DA

Figure 3.4 Basi: PRIM software a.chitecture

37

AT TN

SOF TWARF

of thr zctual MLP-900 MINIFLOW instructlion
sets onstructs completely foreigr to
MINIF _UAd (e.g., multiplication) do not
appear In GPM. As a simple example of
MINISLOW generallzation, consider that the
result of a GEAR (GEneral ARithmetic)
minlstep mav be shifted left or right only
by 0, 1, 2, 4, 6, 8, 12, or 16 bits; In
GPM, any shift amount may be specified,
and the complier will generate multiple

shifts as required.

As the production language for the
MLP-900, GPM 1is constrainec to satisfy
many of the usual requirements f an
asserbly lanauane. fFirst. there 1is a
well-d2flned subset of GPn statements that
produce exactly one ministep per
statement; the <«uiset s capable of
qgenerating all possible ministeps.
Second, multi-ministep -taterents a0 not
qenerate implicit side effects; for
example, a cormplex arithmetic assignment
rhat requires a temporary register for an
intermediate result will generate a
compile-tine error wunless the programer
tas explicitiy declarea some register to

be available as a temporary.

The GPM compller is successfully
beinc used to write diagnostics for the

MLP-900 and test user software (emulation

38

of & PDP-10), Experience with the
compller reveals that minor modiflcations
and suggested speed improvements may be
required. The improvements will be
considered as more measurepent data Is

accumulated and specific critical code s

further identified.

MLP-900 Microvisor

The MLP-900 microprogram supervisor
(microvisor) is a small, fully protected
resident syster that controls the MLP-900
and its communication with the POP-10, It
loads and unloads the user’s MLP-900
context upon command frcm the PDP-10,
supports gagirg of the user target
program, prctects main memory and the rest
of the POP-10 system from user interpreter
errors, and provides the interpreter wjtn
a few services, such as an extended
subroutine stack ana calls for external
communication. (The ricrovisor requires
756 (octal) worus ofi control memory,

including its Action request locatinns.)

vhe nicrovisor performs the functions
normally expected¢ of an operating system,
the differcnce being that it 15 written in
microcode and supervises the execution of
microcode. Tncu microvisor interacts only

with the uvser microcode ond the TENEX MLP

driver; it does not provide any facillities

for--or Impose any restrictions upon--the

nser taroet system, User microcode s
subject to the restrictions imposed by the

user mode MLP-90U hardwarc.

PDP-10 Support Proarams

The PCOP~10 TENEX software ftor support

or the MLP-900 consists of a driver to
control communication with -and sharing
of--the MLP-9U0, and a subsystem

(MLP-EXEC) to allow Interactive access to

the MLP-900 for a wuser at a TENEX

terrminal. The MLF driver and its TENEX

JSYS’s comprise the interface to the

MLP-200 used by MLP-EXiCe.

The TENEX MLP-900 Oriver. As

mentioned above, access ta the MLP-90Y

from a TENEX process is accomplished via

the MLFP driver in TCKEX. The MLP-9U0

driver s the extension Iin TENEX of the

microvisor; all communication with the

MLP-900 goes through the driver. While

rew microcode “machines" can be designed

and debugged under the NLP-EXEC, completed

ones vwill work directly through their own

terminal subsystems, vhich will

comnunicate d.rectly with the drivere.

Communication with the driver is

accomplished through a series of JSYS’'s

SOF TWARE

which minic (rouchly) the JS7YS‘s for

subsidiary fork control., The two

principal clements Involved in creating

and running the MLP are the MLP context

(the user ricrocode toaether with all the

HLP registers) and the target system upon
which the context is to operate. The
calling process must build both before

esteblishing access to the MLP.

The context is a structure that

contains all the data necessary to load

the MLP ana beain (or resume) execution of

the deslred mnicrocode. It includes not
only an image of the MLP-900 control
merory, but also the i(nternal MLP-900
reglsters and sore cells wused by the

driver to implement MLP-900 communication

with the PUP-1U. The context Is 10 memory

pages (512u words) lonc, and must begin on

a page boundary In the caller’s address

space.

The target system i< the memory upon

vhich the MLP context is to operate, It

is defined as a TENEX fork (or process),

either tne caller or a subsidiary fork

established solely for this purpose,

Typically, the tarqet system fork (SFORK

or SFRKV) will never be started on the

POP-10; It exists to deflne an address

space for MLP execution.

39

Sy

., R o WA T

SCF TWARE

To protect the ISI TENEX system and
lessen the impact of MLP debuaging, both
hardware and software, the initial version
of the driver has been implemented almost
entir=ly as a normal user process rather
than as part of the TENEX operating
system. This prellminary driver is being
used in debuaging the entire system,
including the interfaces between the
microvisor and the driver, and between
MLP-EXEC and the driver. vhile the
di fferences opetween preliminary and final
driver are transparent to both the
microvisor and the user microcode, there
are sore unavoldabl- differences for the
calling TENEX process. NMLP-EXEC is aware
of the differencec, and hancles them
rioperly; te the wuser of MLP-EXEC, the
only visible difference i« that the

response tire i< loncer.

MLP-EXeC ana |

Comiangs. #LP=-£XZC
is o user program, called via TdiitX,
written primarily in HLI1SS. The proaram
hasically consists of two modules: the 1/0
nandler (whicn includes tile accesy and
tarcet rmremory allocation) and the re-
buagaina: facility (ILP DD1). The MLP-EXEC
comrande assure a familiarity with
TEKE. Exec coemmanas; a subset of TENEX

cormands is irplerented vor functicons

sirilar to those of the [bLnEX Execce

40

MLP-EXEC provides an environment In
vhich the user at a terminal can compile,
load, execute, and debug MLF-900 microcode
in a manner simlilar to that wused for
debugging progorams on the PDP-10, In
addition, he «can create and debug target
programs and environments--although these
tools must be provided at a very primitive
level, since MLP-EXEC cannot know the

nature of the target envircnment.

The MLP~EXEC “ready* character, 4“>,%
sianals the user to enter a commrand,
Cormands Lo NLP-EXEC can specify any of

several types of actionss:

i} Contrcllina the loadinc, execution, or
aeduacing of the iLP context.

2) Controlline tne loadina ana debuaaina
of the tare2t system.

3) Settinu up the input/output files for
the .ibe.

4) Proviaing access tc tne ToihiX within

Ple-LXEC as a corvenience.

A1) the comnends for user context
ranipulatiocn wveqin with a perioa (".%).
inese include Loho, Kisel, CUNilNuL, RUN,
SAVE, Gti, an' LLT commanas. All of the
cormancs for tne taraget system pegin wvithn

the character Y/Y anc use standard TeleX

rwmmm«,r— p—

""'""'—!-—---—n—.-._._,__'

subsystems In respondina to the command
(i.e., /LOAD Invokes the standard TENEX
loader to load a relocatable binary file
into the target system’s address space).
These Iinciude GET, MERGE, DUOT, SAVE,
SSAVE, and RESET commands.

The command format, key vords,
arguments, and separators are [dentical to
those used in TENEX. MLP-EXEC prompts {or
each field required by the user’s command,
and the escape terminator will complete
abbreviated commands. Additionally, two
characters (Control T and Contro! () act
as cormrands in themselves to control MLP
execution and to provide status
information on the MLP. Editing centrol

characters are also included to edit

comrand key wcrds and arquments.

User Interpreter and Tarqet Program

The user’s interpreter is a progranm
written in GPM to run on the Mup=-590; it
defines a {re-entrant) MLP-900 control
memory image. This Image, together with
all the nonprivi leqged registers and
flip-=ilops within the LP-9U0v, comprises
the MLP-900 context; user’s contexts are

loaded and wunloadcd as the HMLP criver

shares the {iLP among different users.

FUTURE EFFORT

The context defines the user’s

interpreter {or target machine) and
operates upon the user target program in a
totally arbitrary vay. The only
constraint upon the target program s that
it flt into a S12K, 36-bit (virtual)

memory Spaces

fUTURE EFFORT

The ISI1 TENEX environment currently
includes a KA-1U0 and a KI-10 CPy, one as a
backup for the other in providing TENEX
service to the ARPA user community.
Initially the PRIM project will wuse the
backup CPU to provide the flexibility
required by the development effort vith
the wuser interaction vwithout jeopardizing
the service operation. The KI/KA CPU com-
patibility introduces problems requirinc
woal fications to the microvisor, espe-
cially in the page faulting .outine,
which will be perfcrmed durinec the next
few months. The remainirg haidware
efforts are to investigate faster clock
speeds (currently 4 MHzZ) and to desiagn the
general-purpose |anguage boards. The
system integration, documentation, and
softvare debuacing |is currenrtly nearing

conpletion,

The major effort of the near future

4]

FUTURE EFFORT

wvill be that of maintainina the PILIM

facility end of indoctrinatinag users. The

specified. User int

expressed by miiitary se

erest hes been

rvices |nterested

introduction of users via the ARPANCT will in emulation of CPU’s currently in the
be the final system test and will heip to procurement cycle, by researchers
icentify possible areas of irprovement. interested in direct high-level iunguage
Initially, the MLP-900 wi ll operate with a Interoreters, and by computer science
sinale user with Jlocked pages of target instructors preparing curricula for
memcrye. With increased confidence and microprogrammed processorr design. PRIM
experience the PRIM system wlll evolve shotvld be supportiing one of these users by
into the time-shared resource origina'iy June of 19/4.
REFERENCLS
i Richardson, L. C., PRIM OQverview, USC/Information Sciences Institute, ISI/RR-74-1Y,
February 1974.
2 Annual Technical Report, May 1977Z2-May 1973, USC/Information Sciences Irstitute,
Isi/sR-73-1, 1975,
2 Cestreicher, D. R., General Purpose Microprogramming Language Reference Manual,

1'SC/Infermation Sciences Institute (in proaress).

L TENEX JSYS Manual,

42

Rolt teranek ana Newnan,

Inc., Cambridqe, Mes

Se, 1973,

PROTECTION ANALYSIS

RESEARCH STAFF 3 Richard L. Bisbey, 11
Jim Carlstedt

CONSULTANTS: Richarae J. teiertaaq
Gerald J. Fopek

RESEARCH STAFF SUPPORT: Betty L. Randall

part of the Software Assurance
project {1]. The former focused on
INTRODUCTION near-term solutions, while the latter was

a more deductive approach to discovering

This project has developed and is
nmore compivte and systematic evaluatjion

continuing to refine methodolagies,
methods. These are reported separately

techni ques, and standaras for the
beiow, followed by a report of activities

analysis, tescing, and evaluation of the
of the Protection Analysic project since

protection feature« of operating systens.

September.
Its qgoal is tc provide answers to the

question of what tests and procedures can
eP IRICAL SYSTEM Si1UlY

and should be applied to operating systens
in order to determine (1) to what extent a Durine 1972, the Empirical System
given system meets its requirements for Study group at IS] devised a method for
preventing unauthori zed or improper finding security errors in operating
operations and (2) how systems can best be systems by iacntifying types of Yerror
designed and implemented to reflect such ratternsY, This approach vas based on the
requirements. The research directly sup- empirical observatijons that (1) the
ports the softwvare security requirements majority of errors in operating systems
i ssued by Dol security policymaking can be categorlzed using a limited number
agencies. of generic error types ani (2) it is
easier to find errors by ystematially

Tne Protection Analysis project was
searching for Instances of g¢eneric error

formed 1In September, 1973 by the union of
types than by randomly searcning for logic

the Emplirical System Study and Protection

flaws.
Theory prolects, reported last vyear as

43

e b L

EMPIRICAL SYSTEM

Field Tests

In late 1972 a test was made, wusing
the Multics operating system as a test
subject, to determine the usefulness and
effectiveness of the method. As
previously reoorted {i], security errors
vere found, and the nethod was shown to be
effective, A second test was conducted in
the summer of 1973 using the error pattern
approach, again using Multics as a test
subJect. The purpose of this test wvas
again to verify the error pattern approach
and to accumulate more infcrmation on its
use. Curlng this test, 3 member of the
Multics staff was added as a test
participant, having been briefed on the
expected error patterns. The protocol
used for the te't was the same as that

reported in Ref. 1, i.e.2

& Al system information was made
avallable to the test participants

prior to the test.

® The =system being tested vas not

modi fied during the test.

N Proposed errors vere verified by
logical analysis and not by writing
or runnlina programs to explolt the

errors on ,ive systems,

44

The purpose of the protocol was both to
expedite the test and to eliminate any
possible Ygaming" sltuations In which
systems personnel could retroactively
alter the system to disguise or eliminate

faults.

The goal, wnich was to find a system
error using the above procedure, was
immediately achieved. A design error in
Multics affecting operating system
security was discovered, necessitating a
redesign and reprogramming of portions of
the system. The error was reported to
both Ml ind Honeywell, and changes are
currently belng made to correct jt. The
results of this and the previous test, as
well as insiqghts into the use o©:. error
patterns, have formed the baslis for an
automated protection evaiuation systeir
based on generic error types, which is

described below.

Encapsulation

Enormcus sums are presently invested
in computing equi pment and operating
system software., The neea for security in
those systens is strongly felt In
qovernment and business as vell as in the
milltary. The problem is intensified by

the current unrel.able state of

P, TR

g

e R

Information controls in conts=mporary

systems,

Touay a certifiably secure multiuser

operating system does not existe. No

operating system has been able to

vithstand malicious attacks by skilled

penetrators. Aetrofitting these systems

(in the general sense of repalring the

respective operating systems in all their
various versions) {s an enormous task, not
vell understood. To date, all such

attempts have failed. Even systems

created with security as a major design
parameter have been easily penetrated. 'n
qeneral, nultiple

varjous operating systems by

retrofitting the

versions of

revising their code is impractical.

Nevertheless, the security problemn of

existing systems is important and will not

diminish in the coming vyears. The only
solutior now avallable toe those instal-
lations requiring reliable protection
has been physical isolation: to have
separate operating systems for each
securfty category or level and run them
sequentially. For the military, a
separate operating system is required for

each of the four securlty levels. Ffor the

typlcal commerclial installation, separate

operating systems might be required for

EMPIRICAL SYSTEM

payroll, acccunts recelvable, and general

computing. A considerable amount of

useful machine time is thus wasted

changing systems, rigid schedules must be

estabilshed, and sharing can be achieved

only through off -line procedures,

controlled adminstratively.

The Empirical System Study qgroup has

.eveloped an approach to the security

retrofit problem for batch and remute Job

entry (RJE) systems. It is fairly simple

and appears economical; In addition, the

same solution will provide certifiable

security for a variety of manufacturers,
computers, and operating systems. A small
minicomputer contrclling several banks of
switches is added to a currently existing
confliauration. These switches, which are
placed in tne read/write circiit of the
peripneral devices, allov the minicomputer
to enable or disable those devices (sce

Finure 4.1). As in the case of virtual

machine systers, each encapsulated user

program will run vith Its own operating

system., Vepending on ‘hich operating

system is currertly {n control of the
production C(CPU, the minicomputer sets the
device swjtches accordingly, so that the
operatina system can

pnysicaliy access

only appropriate aevices, For many

existing peripheral devices, such swjtches

45

A4

¥

EMPIRICAL SYSTEM

already exist. Estimates of the cost of

the above encapsulation unit, including

the one-time expense of system design and

sof tware verification as well as the

per-installation expediture for hardware,

appear to be eminently reacsonable.

The wunit has several attractive

aspects. Original software can rur

vithout changes, read-only sharing is

provided, and scheduling flexibility is

increased. Most important, the software
Disk drives
r= A
1 Disk
| switch i
by =
I
\\
O . . ' \\
rngina T'-__-1 To
CZ.U - === -" C:,A,,'m,-er ‘b unit record
Memory - higiaall equipment
,/
’
7
-- - -/
I Tape |
Iswhchl
L 4
Tone drives

Figure 4.1 Security encapsulation unit

relevant o security is small enough that

its security properties can be formally

verified; also, its code |is isolated and

protected from any other software. In

this fashion, encapsulation provides a

certifiable, reliable means for multilievel

computer security on existing batch
systems, possibly encing their retrofit
problem. This work Is documented in more
detall in Ref. 2.

PROTECTIGN THEDRY

Protection is that central aspect of

computer security concerned vwith the

control of operations within the domain of

the operating system, i.e., by internal

processes on internal objects. Aj though

the security of a computer system depends
on the correctness and completz2ness of its

protection mechanisms, there is a

vel I-known shor tage of methodologlies

elther for desjgning these mechanisms or

for evaluating existing systems fcr

€rrorse.

The goal of the Protection Theory

projJect was to design and develop an

evaluation method that would be both

thorough and systematlc, properties that

current methods lack. A method specific

to the protection problem (s likely to

-

become cost-effective sooner than tools
Intended for the verification of computer
programs in gqgeneral [3). The project was
begun in January 1973, starting vith an
extensive survey of the field to determine
the current state of evaluation
methodology and the boundaries of the
protection problen. The work reported

here was concerned with twvo major areas:

1) Outlining an evaluation scheme. The
result Is an independent policy-based
(IPB) evaluation method, utilizing
concepts from the field of structured

desiqgn.

2) Formulating the protection problem and
deriving a notational basis for the
expression of protection policy. A

formulation vas

level-independent

de-lved.

The IPE Evaluation Method

From the point of view of structured
design (4], system development is a
process of transformations on some
hlerarchy of objects and specifications of
Increasing concreteness and decreasing
abstractness tovard the lover levels,

ordered by the relation oi representation

(see Flgure 4.2).

PROTECTION THEORY

With respect to protection, the more
abstract elements are those of policy and
the more concrete those of mechanism. If,
durling development, all the represen-
tational relations were maintained ex-
plicitly, the protection mechanisms of a
target system could be evaluated
constructively. Otherwise, assuming that
the elements at some level c¢f policy
(Psys) are stated as explicitly as those
at the mechanism level (M-ys), evaluation

must consist of an independent conparison

of Msys with Psys--hence the name "IPBY,

Ab;tractness Policy

A A

| '

Concreteness Mechanism

®——‘® : "X is (partially) represented by Y*

Figure 4,2 Representational hierarchy

47

PROTECTION THEORY

Such a method requires a separate

hierarchy (see Figure 4.3) vhose ordering

relation is one of logical 1Implication

from policy to mechanism. An Input to

such an evaluation Is the set Psys of

target systemn policy. The implications

define a mappi ng that produces a

corresponding set of reference speci-

fications (Mref) at the mechanism level,

vith which Msys can be compared for

correctness. If the IPB method is to be

applicable to a variety of systems, thu

domaln of IMPL must be a collection of

Policy domain

Generalized
mechanism

Figure 4.3

IPB evaluation scheme

48

protection policies that encompasses the

policies of all those systems, and its

range must be a generalized set of
protection mechanisms, such as that
proposed In Ref. 5, sultable to enforce

them. A major difficulty is that in order

to compare Msys with Mref, the

system-specific description of the former

must first be Ynorralized" intm

generalized terms.

Policy and Its Express.on

Though many protection schemes and

models exist at the mechanism level,

little work has been done at the policy

level, so that the explicit basis needed

for IPR evaluation 1is mi ssing. The

essence and boundaries of the prctection

problem are not readily apparent. Among

many formuiations, the one most

appropriate from a number of standpoints

Is that protection is the prevention of
vnintended use of certain (protected)
obJects, vhich transiates In more

concrete terms into the following:?

® The attachment to each protected object

(explicitly or implicitly) of a

In certaln operations.

8 The prevention of .such an operation

vhen the condltlonal evaluates to

faise.

An operation is a combination

{X,W,Y] where X 1is a process, W is an

operator, and Y is the set of operands in

the application of W by X. Any of these

may be protected obtjects. Pre‘enting the

operation IX.N.Y } means either pre-

venting the selection of W by X to form a-

activation Wx or preventing the binding of

one or more elements of Y to either W
(static) or Wx (dynmamic).

Taken at the mechanism level, this
formulation exhibits the key role of
primitive linking and binding operators,

vhich must enforce all occurring

conditionals., For the sake c¢f economy,

octual operating systems severely restrict

the qgenerality I nherent in this

formulation and also make heavy use ~f

stored represcntations of the results of

condition evaluations, e.g., in the form

of Ycapabilities".

However, because the concepts of this

formulation can be interpreted at any
level of representation, It is also
wvell-suited to be the basis for

specifications at the policy level. This

is demonstrated in Ref. 4.

PROTECTION ANALYSIS

PROTEC i ION ANALYSIS

In September 1973, the Emplirical

System Study and Pr~ 2ction Theory

projects began a study of! ways 1In which

thelr complementary approaches to

protection evaluation could be combined

into a single method, with the emplirical

techniques of the former applied to

achieving the goals of the latter, The

was influenced by three
observations:

1) The security community lacks a

production evaluation tool. Such a

tool must be exportable, requiring

for its apulication only a

familiarity w.th the target system

rather than a high level of expertise

in evaluation techniques; rellable,

finding consistently all erreors of

the types covered; and economicai,

not requiring large evaluation

projects or tooling-up phaces. These

attributes imply that such a tooi

will be larqely automated or

computer-assisted.

2) There is currently no known

organl zed effort to collect and

anaiyze protection errors detected

during varlous evaluations of

existing operating systems. Such an

49

o

e

L5

e 5

o
i

PROTECTION ANALYSIS

effort could have significant value
to the computer securlty field, both
in facllitating future evaluation
efforts and in identifylng classes of
errors to be avoided in the

cevelopment of future systems.

3) Protection errors do fall Into

distinct classes or "patterns."

Guided by these observatlions, the
study focused on the way 1In vhich the
output of protection eveluatlons (l.e.,
eirors and thelr patterns) can be utilizacd
as feedback 1in the development and
improvement of an evaluation method
itself. The result was the design of
a systemat.ized error-driven evaluation
scheme t-at utilizes the output of error
analysis both directly, to qovern the
evalyation process, and indirectly, to
increase the comprehensiveness of the tool
based on this method. The two projects
merqed Into the Protection Analysis
pro.’ect, using the collection and analysis
of protection errors as the Iimmrdjiate
phase In the development of the evaluation

tool.

Error and Pattern Processing

This work, which began in early 1974,

consists of the following activitiess

50

Error Collection. The primary Inout

is an Yerros base consisting of informal
descriptions or protection errors
--detected as well as potential--both
contributed by evaluation personnel and
gleaned from the literature and other
sources. In addition to the Empirical
System Study project reported above,
current sources include Project KISOS at
Lawrence Livermore Laboratory, the
Computer Systems Research Group at MIT,
and a Security Analysis Group at The Rand

Corporation.

Error Analysis. The analysis

proceeds in two stepss: identification of
th2 raw pattern and identiflcation of
feaoures, The rawv pattern is the
{minimal) set of conditions that together
consti tute a possible error: either those
hnlding for the operating system as a
wvhoie or possible sequences of actions
that can occur more locally. "Raw" nmeans
described in terms of a particular
operating sysiem or line of systems,
features are the individual conditions of
the raw crror, as well as the operating
system entities they Involve. The feature
technica!

termincloay hecomes the

vocabulary of the ptoject.

b

Classiflication and Generalization.

These two activities are closely related.

Each raw pattern Is compared with others

in the current set .0 determine

di fferernces and simllarities. As "he set

grovs, a grouplng or classif'cation

occurs, with the patterns In each group

seen as Instances of some generallzed

pattern, described In correspondingly more

abstract terms. As this process

continues, generaljzed patterns in turn

become associated with stiil more general

patterns, resulting Iin a hierarchy wvith
the most general and abstractly described
patterns at the upper levels anc the most
speciallzed and concrete ones at the lowver

levels.

Data Management. The collection of

raw errors, the hierarchy of patterns, and

the glossary of features will be

represented as & computerized da’.a

base In such a way that classifying an.

generalizing activities can be carrled out

efficlently. The follovwing retrievai
functions ~ill be Implemented:
® The retrieval of e~rror description,
pattern description, or feature
definition by name.
® The generallzing pattern of a glven

error or pattern, respec-ively.

PROTECTION ANALYSIS

® The errors or patterns of which a

glven pattern is a generallzation.

8 The errors or patterns In which a

given feature occurs,

Ihe faclilities of 1SI°s TENEX operating
system will be uted to maintaln this data
base.

The Error-Driven Evaluation Method

Protection eraluation s regarded

here as a two-step process: normalfzation

and comparison. The first Is the

identificaticn, extraction, and formali zed

description of the protection aspect,

which is gqenerally embedded in the large

and complex volur-2 of Information

representing a target operating systen.

ihe second is a compari son of the

n rinellzed protecrion description vith &

glven set of reference Information to

determine the presence of errors.

In the error-driven scheme, tlese

steps are directed by the output of the

error and pattern processirj activity (see

Figure 4.4). Normalizatlon is directed by

the generalized feaclure set, It is

essentially a systeratic search of the

target system for Instances of the

generall zed features. This Is basically a

5

PROTECTION AMALYSIS :
Classlficatlon and Generalization. ® The errors or patterns of vwhich a
These two activities are closely related. glven pattern Is a generalization.

Each rav pattern is compared with others
® The errors or patterns in vwhich a
in the current set to determine
glven feature occurs.
differences and simjilarities. As the set

grows, a groupl ng or ciassification

The faclilities of 1SI°s TENEX operating
occurs, vith the patterns In each group

system will pbe used to maintaln thls data
seen as Instances of some generalized

base.
pattern, described In ccrrespondingly more

abstract terms. As this process
The Error-Driven Evaluatiot. Method

continues, generallzed patterns In turn

become associated with still more general Protection evaluation |is regarded
patterns, resulting in a hierarchy with nere as a twvo-step process: normalization
the most general and abstractly described and comparison. The first is the
patterns at the upper levels and the nmest {dentl fication, extraction, ana formalized
specialized and concrete ones at the lover description of the protection aspect,
levels. which {s qenerally embedded in the large

and comp lex volume of Information
Data Management. The collection of

representing a tLarget operating system.

raw errors, the hierarchy of patteerns, and

The second is a comparl son of the
the glo ._sary of features vill be

normallzed protection description vwith a
represented as a computerized data

given set of referenc? I[Infermation to
base In such a way that classifying and

determine the presence of errors.
generalizing activities can be carried out

efficiently. The folloving retrieval In the error-dr!ven scheme, these
functions will be Implemented: steps are directed by the output of the
error and pattern processing activity (see

® The retrieval of error description,
Figure 4.4). Normalization is directed by

pattern description, or feature
the generallzed feature sect. it Is

definition by name.

. essentially a systematic search of the
| 8 The generalizing pattern of a given target system for instances of the

[error or pattern, respectively. generallzed fecatures. This s basically a

51

TTTIIPRTRTITWIT TR, FTOR "o r ™

L

TR

PROTECTION ANALYSIS

manual process, but can be computer-
assisted by means of a program similar to
computer-assisted Instruction. Compar-
ison is directed by the «a«eneralized
pattern set; it {is a search of cthe
normalized desciption for combinations
matchling any of the glven error patter.s,
a process that can easily be automated.

The vutput is a list of error indications.

The error-driven method is 'miflar to
the IPE method described under . -otection

Theory above in that a normalized

Development Production
Collected Operating
Errors System
Features ormalization
Error
Analysis
Paitern
14/
Pattwers Matching

Figure 4.4 Error-driven eveluation process

52

description of the Jtection mechanisms
of "the target system |sS compared vith a
set of reference information. The most
important difference is that with the IPB
method the reference Iinformation is the
complete set of generalized mechanisms
'logically Implied by the stated policy
of the target system, so that the
completeness and consistency of the target
mechanisms can be determinea. With the
error-driven methoa, only errors of the

types represented oy the given patterns

vill be detected.

The aovantages of the error-driven

method are the folloving;

s Jt systematically caplitalizes on

accumulated protection evaluation

experience,

® jt Is appllicable in the short-term

future as a standard evaluation tool.

® As the error and pattern processing
activity continues and Its scope
expands, the conmprehensiveness of the

method Increases correspondingly.

® Because of the Insights galned, the
error and pattern processing activity
Is also valuable as a contribuilion to
protection theory and te Lhe

development of the IPB method,

PROT ICTION ANALYSIS

especially in identifyling different duction tool for testing operations
protection policies and understanding that is sultable for use as a test
their implications. The error-driven standard.

evaluation method provides a pro-

REFERENCES

Arnual Technical Report, May 1972 - May 1973, USC/Information Scieices Instltute,
TST/SR=73-T, To73: —* '

Bisbey, R. L., and G. J. Popek, _Encapsulation: An _Approach to (0perating System
Security, USC/Information Sciences institute. T§l/RR-93-I7. October 1 o
Linden, T. A., *A Sumrary of Progress Toward Proving ?Program Correctness," AFIPS

Conference Proceedings, 1972 Fall Joint Computer Conference. VYol. &1, Part 1,
AFTFS Press, Montvale, N.J., 1972, pp. 261-211,

Carlstedt, J., Toward Explicit Pollcy: A Structured ZApproach to Design and
fvalvation of Protectlon Systems, USC/Information Sciences Institute (in
progressy.

Jones, A. K., Protection in Programmed Systems, {arnegie-Mellon University,
Department of Cormputer sclience, June 19/3 (availlable from NTIS as AD-765-535).

53

COMMAND AND CONTROL MESSAGE PROCESSING TECHNOLOGY

PRGJECT LEADER: Robert H. Stotz

CONTRIBUTING STAFF: Thomas 0. Ellis
Louis Gallenson
John F. Heafner
Donald R. COestrelcher

CONSULTANT: Je Clifford Shaw

RESELRCH STAFF SUPPORT: Norma B. Johnsto

tycically requires from several hours to
an entire day. Preparing a message at the

INTRODUCTION
origination point can invelve hours of an
This preject explores the use of action officer s time {and teveral days of
advanced com; uter and communication total elapsed time) to obtain the
technlques Iin military env' ronments. The necessary approvals, each of which may
nee ~f packet-switched dianltal network: to require modification of the message. This
rrovide a messaae handling service coordination of messages generally has to
(exerplified by the ARPANET) has imrediate e done in person, which consumes large
and <jianiflcant usefulness to the military amounts of time. In fact, neariy ali
community. The possible applications of cormunication about classified material
such & service have sarved as the must be handled in this manner because of

principal focus of the work to date. the lack of secure telephones.

Current military communications A specifi- example of such ar
systems use the Autodin system tc handle environment was the object of a study
formal messages at electronic speeds performed by 151 in the spring of
betweern ccmmand communications centers. 1973 (1], investigating the possible

However, maruyal messaqe delivery from the anpllication of network technology to the

cormynication center to the addressee CUTCO (Consolidation of Jeleccmrunications

Preceding page blank *°

m TRRTE T e R

INTRODUCTION

on 0Oahu) program. COTCO Is a DoD effort
to improve military communications on
Oahu. The ISl report transmitted via ARPA
to the Joint Chiefs of Starf recommended
that the present largely manual message
replaced by

transmission system be

ai interactive computer-based system
providing dlrect vwriter-to-reader service
for some 6000 actlon officers on 24

ml11tary bases.

The system proposed was based upon an
ARPA-1lke network connecting 2000 widely
distribut.us CRT terminals to five nessage
processing computers. Such a system would
not only Iimprove -2xisting services but
also provide several new capabilities as
vell: 'nformal communication channels to
aild in conducting everyday buslness;
faster coordination of forma'! messages
transmitted vlia Autoding and broad support
services related to communlicatlions, such
as facilitles to file and retrleve
messages by user-defined subJect titles,
suspense (tickler) files for action, and
reports. A

automatic message status

mechanism for automatically creating
dupiicate flles was proposed, as well as
dual connections between the host computer
and the Intermediate Message Processors
(IMPs), so that no equipment fallure could

Interrupt communicatlions to a large

seament of users. Actual installation of
a test model of the system on O0Oahu was
proposed t~ prove the feasibility of the

approach.

The Navy, which has been assi_ ned the
task of Implement’ng the COTCO program,
currently has ithe ISI plan under
consideration. Interest has been
expressed in per formi ng, vith the
cooperation of ARPA, a test of an
Interactive system such as the one

proposed.

ISSUES FOR IMPLEMENTING AN

AUTOMATED
MESSAGE SERVICE

In the meantime, the Command and

Control Message Processing Technology
(CCMPT) project has addressed the I[ssues
Involved In the Implementation of auto-
mated message handling services for other
mllitary environments besldes COTCO. The

goals of such systems are the followlng:

® Enhance the currant formal message
service.

® Provide an Informal message service,

Enhance current off-line message
handiling (letters and reports),

® Enhance functions that support message

handling (file retrieval, suspense

files, etc.),

In order to achlieve the sort of
system envisioned, It 1Is necessary to
provide the followlng basic components ard

attributes:

® Core-system hardware architecture that
cerves as the foundation for bullding
the service,

® (Core-system softvare architecture and
programs wvhose facllities are easy to
learn and operate by uvsers unfamlliar
vith computers.

® Application softvare that performs the
functions required.

® Reliablility of service,

& Securlity of data.

Although eventually the system ‘nust
Incorporate all of these considerations
simuitaneously, current research is
fnvestigating them independently. The
form of the core-system hardvare
architecture exists today within the
ARPANET, al though the specl flc
implementation does not meet the
reliablllty and security criteria for a
military environment. Most cf the other
{ssues have only part'al solutions at this
time; research programs directed toward
completing these solutlions are belng

Tdentifled or are under way.

HARDWARF.

HAROWARE ARCHITECTURE

The core system must allow
Interactive response, connection to many
terminals at distant sites, and processing
pover for the message service. The system
architecture is chown {n Fige S5.1.
Terminals connect to Terminal Interface
Processors (TIPs) llke those in the
ARPANET. TiPs

I nterconnect through

high-speed (e.g., 50=-kb) communri cat{on
lines. Thls arrangement of TIPs serves as
a adalstributed, packet-svitched, store-
and-forwvard network. Through this network
the terminals have access to several
message processors that supply the messaaqe
service functions. In principle any
message processor on the network can
provide that service as long as It can

access the vuser’s files (which reside on

more than one message processor).

Also shovn connected to the network
in Fige Sel are the special-function
computers INT and WWMCCS. These
f1lustrate the way this message service
permits Interface to external netwvorks
VINT Interfaces to Autodin) and

task-orlented systems (WWMCCS Is a

speclal-purpcse command and control
computer system). By extending this

concept to Include other networks and

57

L i

58

SOF TWARE

AUTODIN SWITCH

INT

INT

8: :
O—1 ™
g

Y-

O
O— e
o8

ACTION OFFICE

Figure 5.1

system architecture.

Terminal users

PROC

MSG
o FILES
e FILES

WWMCCS

Teminal users

Abbreviated block diagram of proposed com=unication

other task-oriented computer systems, a

rmechanism I< provided for integrating into
multitude of

A sinole framework the

I ndepencent systems being bullt in the
military today.
In this scheme a terminal always

talks to and through a message processor.

lf the user engages in a conversation with

another terminal or a special purpose
corputer, all of the message processor
functions (editor, flles, etc.) are still

at his finagertips.

Thin architecture provides redundant

rathe for messace,, which results in niah
interent reiicbility. Its flexibility in
ter -s of ccarability and perfcrmance

eptimization makes the approach extremely

applicable to the military community.

SOF TWARE ARCHITECTURE

The software archltecture provided

rust, of course, support the functional
operation of an interactive messaqge
handlinn service. This service must
possess good response time and be

consistent and easy to use. It must also

provide data security and highly reliable

service.

The CONNECT system being developed at

SOr ThARE

1sI 1s a human-factors-oriented research

system capable of encompassing a message

service such as that described here.

CONNECT is discussed in more detail 1In

Section 6 of this reporte Lrietly,

however, It is an oniine conunication

scrvice designed to interact with its

users in a way that seems natural to them.

It gives the appearance of perscnalijzed

service, makes extensive use of tutor

facilities to guide the user, and employs

a consistent language for interaction that

is easy to leain and use.

The application proaram for an

interactive messace service (s that rart

of the total enterprise most apparent to

its viers as they employ it. To

vnderstand users’ needs in sufficient

detail, a tear of four ISl staff members

spent three days at CINCPAC headguarters
at Camp Smith on QOahu in February 1974 |n
an intensive study of procedures currently
employed for generating and djistributing

messages.

The required funct ors of a message

service identliied by that study include

facilities to ald in message

preparation, transmlission, and reception.

Sophlisticated text editors can make it
easler to prepare the various initial
59

SOF TWARE

drafts of a message. Coordination of the

message (1. e., getting the necessary

approvals) up to Its final release can be

automated, eliminating the present need

for hand-carrylng. The routing of a

message can be assisted through an

avtomated "directory assistance® service.

Message transmission will be virtually

i mediate, reaardless of the distance

covered. Many ailds «can be provided the

addressees for reading, printing, flling,

and retrieving messages. An alerting

rmechanism will call a user’s attentlon to

the arrival of a high-priority messace.

racilities for scanning messages,
reacdreccina them (sending on to others
net ~n the address lisv;, and informing
the onriainator of action téken will also
prove uvseful. Other requirements {den-
tified vere various facilities for
status Inauiry, programming, responsi -

bility traclng, accounting, training, and

interface to off-1ine processes.

Many of the functions identified are

straiqhtforward and already exist in

present - ystems, Others are more subtle,

reqniring research Into methsdologlies for

their Implerentation. As a part of the

CONNECT development, the existing pleces

are being integrated Into a sinale system

to vhich are being added the necessary

programs to conduct the research reaqulired.

An experimental message service

within an actual military user community

would provide an excellient basis for

conducting some of the needed research on

“he application program. [n addition, |[f

the user communi ty vere carefully

selected, it would provide the opportunity

of per forming some direct technology

transfer without the wusual Intervening

devel opment cycles, Investigation of

potential sites for such a test Is

currently under way.

SECURITY

System security must be considered at

sceveral levels. One aspect s simply

control of access to the computer, files,

cemmynications links, and terminals. A

second is radiation security (i.e., the

shielding of electromagnetic and acoustic

emi ssion from the actlve elements of the

system). A third is Yorivacy* or

operating cystem security, so that one

user cannot accidentally or intentionally

have access to files to which he |5 not

authcrized. This last consideration

extends also to rellability in that one

user should not he able to rerder part or

all of the system useless by any operation
he can perform at a termina,. Nor should

any load condition render the system

Ineffective to critlcal users.

With a terminal-c-iented service such

as that proposed for COTCDO, security can

be violated through a large number of

devices (i.e., all terminals and

communicatlons lines). vhis fact

necess| tates ejther stringent access

control or a multilevel plan of system

securlty. If 3 svystem can be developed
that carnot be broken, it can be used for
both unclassified and classifled messages:
communications lines and terminals that do
not carry classified trafflc will not need
special securlty measures. Otherwise, all

users must be cleared to the highest

security level, and all communications

lines and terminals must be provided the
same level of sccurlty control. Clearly,
a multilevel secure system Is an important

Ingredient to realizing the full potential

of message technology In the mliitary
community.
Even in a multilevel secure system,

those terminals that handle secure traffic
wi 1l necd to meet the access and radiation

restrictions. Radlation control of CRT

terminals generaliy requires expensive

SECURITY

flltering and shielding. Display
technologles that do not reaquire
refreshing In a fixed time pattern are

much less prone to deciphering. For this

reason, plasma and other direct-view
I mage-storage displays are bel ng
investigated as potential Ysecure®

terminals.

Communication lines between terminals

and TIPs and between TIFs and TIPs must

also be protect~4 from being read by

unauthorized persons, which can be done by

speciallized %Yhardened” wires for short

runs through moderately controlled

environments. Otherwise, encrypting

devices con ve used that scramble
the data on the line s0 it is
unintelligible except to a matching

decryptore. This encrvption/decr yption
equl pment currentiy tends to be rather
expensive (510,000 to $15,000 apiece).

Since the number of lines betwveen TIPs |s
relatively smail, encrypting these is
reasonable: however, encryption at the

terminal level appears extremely costly.

One approach to so!* .9 this problem is to
Install local multiplexors to reduce the
Iines. For

number of encrypted

enviromments In wvhich this 1Is difficult,
nev technology must be applied to develop

less expensive encryption devices.

6!

SECURITY

Encrypting between TIPs on the
network wlll serve no purpose urless the
TIPs themselves are also secure--which
current TIPs are not. Desligning a

certifiably secure TIP Is a challenging

but achlevable feat (Autodin, for
instance, Is considered secure), It
involves security clearances for

programmers, careful deslign, classlifled
program listings, and complete analysis

and testing.

An alternatlve approach to TiP
security Is to develop software that can
be proved to be secure (see Section 2 of
this report). To date ro such system is
known to exlst, but several programs are
under way (at Mitre Corporation and UCLA,
for example) to develop secure operating

systems for minlcomputers.

Another alternative Is to encrypt
secure traffic at the terminal and the
message processor only and have the
network operate In the clear on the
encrypted traffic (l.e., all the netwvork
header data will be In Lthe clear vhile the
body 1Is encrypted). This 1Is somewhat
avkward operationally and requires changes
to the ARPA TIP softwvare that c¢urrently
does Interpretive functions on the data.

It also opens the Information about the

flow of traffic wvwithin the nelwork to
possible penetration. for wmany nalllitary
purposes, this too is classifled

information.

The Message Processor also must meet
rigld security speclfications. Because
there are relatively few Message
Processors In the system, the problem of
physical access and radlation securlty is
manageable. Hovever, development of an
operating system that provides multilevel
securlty with the cumplexity required for
message processing Is another ma Jor
project. If the system s closed (not
connected tc other systems) and Is limlited
to transactions only (no programning
alicwed) It appears to be feaslt e.
Security of full general-purpose operating
systems will probably have to avalt a
breakthrough in the development of

mathematically prtovable secure systems.

RELIABILITY

The current rellability of the netwvork
and host computers, although possibly
adequate for research, will not satisfy
the requi rements of an operational
mltitary message systen. Unfortunacely,
the various factors underlying the

rellabl«lty of such a complex system as

the ARPANET are lmperfectly understood. A
program is belng outlined to determine h w
to collect the data necessary to better
understand these factors, which w! 1l help
in formulating speclific action to improve

network relfability.

It i5 imperative to produce not oni

a program (o reduce the probability «

component fallure in the system, but <cis0
a means to recover from fallures smoothly

and rapldly., If a termlnal, encryptor,

comm ~ications line, or TIP in a system

such as COTCO falls, the Message Processor

wl 1l retaln the state of the user so that

he can recover it later on a different

channel. If & Message Processor falls,
the total system must recognize this fact
and switch his

connectlion to a backup

Messaqe Processor. In order to

preserve
the files in this case, every file wriltten
by # essage Processor will be sent (o a
backup Mescage Processor as well. When a
Message Processor falls and a user’s Job
Is swltched over to a back-up Processor,
It 1Is much

important to maintaln as

RELIABILITY

apparent continulty as possible to the
user. This Iimplies a process residing
outslde the wuser’s orimary Message

Processor that is monitoring the status

and context of the user”’s activity. This

process then controls the sviltchover and

keeps the user Informed of e~vents as they

ppen. These recovery functions, vwnich

% not currently Iimplemented In the

netwvork, must be completed before a

reliable system can be provided.

CONCLUSION

The CCMPT project is currently In a
study phase, identifying the problems and

the opportunities for message processing

systems in the military environment. A

program outlining detailed areas for

research is nov being prepared. In

addition, ve are exploring opportunjties

for Jjoint developient with milltary users
that will apply our message technology in
form to actual

experimental military

situations.

REFERENCE

1 EVlls, T. 0., L. Gallenson, J. F. Heafqer, J. T. Melvin, A Plan for

and Automatlion

Tnstitute, ISI/RRTT3=T2Z, May 1973.

Consollidatlon

of Military Telecomrunications on Dahu, USC/Information Sciences

63

¥

INFORMATION AUTOMATION

FROJLCT LEADEK: Uonald R, Qestrelcher

RESEARCH STAFF ¢ John F. Heafner

Richard C. Mandell

Jeff Rothenberg

CONSULTANTS ¢ Russel]l Abbott
Jo. Clifford Shaw

RESEARCH STAFF SUPPORT: Katle Patterson

RESEARCH ASSISTANT: Larry Mlller

Many large segments of the millitary
(most criticaily, perhaps, Command and
Control) depend as heavl ly on the
transmisslon of information as on the
transportation of people and materie!. At
present, sendlng and responding to a
typical military message (using a varlety
of manual and semlautomatic techniques)
requires, at best, days. Jsing an
automated computer-based sender/recelver
on-iine message service system, the same
communication c¢ould be completed within

minuter.

The technology exists today to
rroduce systems for automatic communl-
cation. Wt at does not exist Is a

methodology for making such systems

effective and atcractlve for people
untami liar with the use of computers. The
Informatlon Automation (lA) project at ISI
is deslqgnina and developing this kind of
fully automated easy-to-use interactive
communication system to improve the
effectiveness of actlon officers® message
generation and sending capability. The
proposed system, cailed Communlcations
Network Hodes Effected ry Computer
Terminals (CONNECT), is designed to serve
a large class of both technical and
nontechnlical vusers (including clerical
personne)l and managers) ard could be used
tec alid many everyday military base

communlcations activitices as well.

CONNECT could also be useful to
organlzations with geographically distant
offlces needing to maintain constant
communlcation with each other. Because

CONNECT will be deslgned to serve a

Preceding page blank 63

O NI PR, R

B

ha R

T

-

IR

INTRODUCTION

variety of users with & varlety of
communications reqguireme ts, it shoula be
able ‘o meet many civil as wvell as

millita:y neeas.

Functicrnal Specificatiors

The functlons required of a message
service 1llhe CONNECT can pe divided Into
flve ciasses: message preparatlon, message
transmisslcr, ~vssage receptlion, infor-
mation nintenance, and off-line
func:licns. (ihe word "“message® Joosely

refers to any formal or informal w-itten

docurent,) In additior. tc the messaqge-

related functions, the on-line
capabilities Include access to compu-
tational facilities, since users of

CUNNCCT may communicate with computational
processors linked to the communications

neLwork.

ilessaqe preparation., ressaye

preparation basically consists of
composlino text and obtalring approval for
senc:ny . The user corretponds witn @
messace creation runctlon by mmeans of o
simple dlalogue. CONi.CT is de-ligned o
handle _“anard formats and can promptl
users ‘for necessary completlons, when

several peoole are lInvolved in message

preparation, the hanc-carry gphase of

coordinating trhe messaqe for app-oval s
automated,
Messave transmisslion, The message

transmission functicrn provides facllities
to verify destlnations and to monitor the
message’s status. The service valldates
the addresses of the list of reciplents
provided by the origlnator of the message.
]f the reciplent is rnot currently
arcessible, CONNECT can geliver the
nessage tc a responsible alternate, or
malntain the messaqe until the recipient

availaole, CONNLCT users can ascertaln
the status of a rmessaqe ry means of such
gqueries as "Has it been readl?® ang "Ry
wnomi®, or "jis acticn pending?®, and “by
whoul® (Gquery rlohts cf acdressees can bpe

limlted Ly the mecsaqge ¢-iginatcr,)

Messace receptlior, wiile severaj

mocern <ysteéems provicde adequate message
trensmission facilities, few qive in-depth
consideration to the receiver’s needs,

some of wnich are tne followingi

® [he ;ervice should provide some audible
and/or visual alarm to alert a

recelver to a ne> penpdln, message,

® Messaqges srould ce crgereé to reflect

nriority, orilglnater, subiect, etc.,

AR AP m

making It ecasler for the user ro

sCan messages

Browsing should be avallable, either
for readlng large messages or for
famillarlzing nev personnel vith a
partlicular correspondence flle. Alds
for Incr=asing efflc. ¢+ In scannlng
large numbers of messages (e, g.,

should be

key vord searches)

provided,

Users should be able to forward or copy

messages to others, although In

special sltuations tr» sender may

limit this capabllity.

Reclplents should e abie to

automaticaliy generate feedback to
senders, sucn 3s "Mescage not read,”
®"Read but no actlon," and “Action

pendl ng. ¥

Messages should be receijves In a form
that alluvs them *o be Incorporated

into other cocuments.

Information maintenance., Information

structures such as archives,

correspondence files, name and acdress

files, and scheaule flles are maint.lned.

All Informationr |s autor tically archived

to provide & rellable reposlitery for

m:ssages. Usars may croas speci fic

INTRODUCTION
correspondence flles for all messages
pertaining to a partlcular subject., Other
users may subseqguently address messages to
an addressee’s partlcular correspondence
flle rather than to hls general delivery

fl.es.

Off-1llne functions, CONNECT supports

the generatiorn of dJdocuments such as
reports and letters destlned tor off-line
distribution. Functions avallable will
incluae report preperation, edliting, and

formatting.

EXISTING TECHNGLOGY

Hardwvare

The CORNECT service operates wltnln
exlsting network and time-sharlng tech-
nology. lts components are (1} the
ARFPANET, (2} the TENEX time-sharing oper-
ating systean, (3) the Xerox Graphlcs

Printer (XGP), and (4) high-bandvidth/

soft-copy minals. Some of the com-

ponents .f CONNECT are wunique, whlle

*others have functional equivalents

throughout the industry. Most were chosen
because of their accesslbllity to the

project,

1) The AKPANET s unlque concatenation of

computer resources provides redundant
communicatlons paths for rellable
&7

T—”

VY ——

™

Lk e T

W

T

3

T

EXISTING TECHNOLOGY

connections to remotc points, and its
modularity allows the total system to
expand or contract incrementally as

required,

Z) tach host computer on the ARPANET
that will be providing a message service
wlill bpe a Ligitai Etquipment Corporation
rur'-16 usina the TeNEL operating system.
CUNNECT will snielc the user from the
varied system Joad levels to prodcuce
uni form response time, In a later test
environment vhe wuser wiii communicate
cirectly with CUNNECT, ornittinag the

dialoque witnh the TENEX (xecutive,

3) e Al a rign-cuality raster
printer coennectec to @ sSupport copputler,
provices Lre nececsary hard-copy ftaciidity
&4 CISSEm, nat s~ eSS aGes anc¢ reports
cutcice the service, Jur Cgdn D€ used as a
typewriter repl acement to maintain

machine-reaaavle copies of all cutgoing

correspondence,

4) Gt tne many suitabie terminals, tec
particit r terminecls are neing considered

y Lne & project stafis tne insti.ute
e ial ysterm (1i5) onc trnie jTthu, -

Loe o deubie-crnnity IV-bLaned ,ystem reing

wui et far 1o Uv systens Loncepts
. aerminals dispiay % lires of .
Chialfa’ ters, gt trey ioave Vol b anle
b8

| 4
i

control of character fonts and Xerox
urapnlcs Printer compatibility. Ine TTY4(
is a new soft-copv/nard-copy termindl to
e offcered by Teletype Lorporation,
purporied to be of particular interest
wrere securlty Ils paramount, A large
number of medium-bandwi ath sott -copy
terminals are available on the mark.t in

the 52,000 te 4,000 range. Iihe above two

are of particuler Interest in that the

first s @lready available ang “hly
flex’ sf ,e the ceconc s expected
to avai laoie for ciqgassifiea

applicat. . 5.

Lser [nteriace Jecrnigues

It s an important part cof the

GCobbhtiil prilesopny to treat each user as

an ircivicuai, Amonag the technlques
previousiy useu to smocty the user
interface, Cuhliie T empnasl zes the
fcllowine: fpeapack responses, nomo-

genedty, nhelp features, error hanclers,

A dindiviaualized interfaces,

fredioscr res,enses, In its simplest

icrm, tre res,cnse perely tellse tre user

T .
‘

that CoiNe i i. cperaticna., and Lnder-

Stanas his recuest, liowever, many of the

e L aCK resionnes alse nrompt tre user

ted input. fhese <tert rvg<aqen (otten

F
¥

one character) change 4s the user moves
from state to state; they mlight differ
when the user 1Is typlng commands, das
oppocsed to entering text., Uther klnuds of
teedback respon-.es are messages that
descriop~ the service’s last action; some
are more elaborate prompts that give more
cetai leag instructions describing the
expected input. Cther responses are
assoclated with abbreviations or short
forms of commands. These inciude vays for
the wuser tc request tre exgansion of an
abdreviation In order tc conflrm the

service’s re ognition of tis intentions.

Homogeneity. Tc insure actural use,
actions common to services are carried out
in a consistent way. If the wuser knows
rnow to do something in ocne context (supply
a date, specify someone’s name, refer to a
fiie, etc.,) he can dco it th~ same way Ir,
any other context, wnlch increaces user
confidence and reduces errors and learning
time. Jhis is not to say that parameters
tnat are not meanlngful in some context
are requi-ed just for conslstency, nor
that the uysual constructicn o, a request
must specify encugh information to resclve
the mcst ampi quous context. [In the former
case simpii«flcation is accepted; In ihe

latter case amblouvus recuests result In

further interaction to clarify the wuser’s

EXISTING TECHNOLOGY

intent, Homogenelty does not jnterfere
with natural operation, Recoqnition of
abbreviations, for example, may be highly
context-dependent {e.q., recognition of
file names s limited to the user’s
current set of files). To enforce
consistency would requlre prohiblting suca
recognition. ratner, CONNECT provides
consistent ways of asking for further

speclfication when necessary.

Help features. Help features ald the
user in determining his cholce of actions
at any qiven time and the consequences of
these actions. They are of two varieties:
one init!ated by the user, the other by
trhe service. User-lnitiated help features
include reguests such as the local time at
a message destination, the status of an
operation, or a tutorici on some service.
CULNECT -qgener ated help fratures a.e
triggercd by user actlons. fFor example,
if the user attempts to use a command h
has never used before, the service may
recommend a short tutorlal on the use of
the command. 1f the wuser s makl ng
repetitive errors, assistance |ls coffered,
perhaps in the form of an explanation of
the service’s current expectatlor from the
user or a more detal led tutorial dlalogue
vith him. Also, {f the wuser is doing

scmething avkwardly, CONNECT can teach him

69

43

TN RPN Ty e T

TR T T

™r

™y

EXISTING TECHNGLOGY

a8 new command tc alleviate the difficulty.
In this case the motivation for the nevw
command wlli be <clear to the user. For
examp !, CONNECT may suggest a <composite
command to replace a frequently repeated

command sequence,

Error handlers. The proper response

to errors is of major Importance in a
well-desi gned user interface to an cn-line
service, CONNECT Is concerned with
detection, prevention, correction, and
noti fication of any detected errors, when
an error s detected, the cause is
explained to the user In detall, and he
nay then pe invited to use the tutorlal.
Terse or coged nessaqges are avelded, ahen
an error is detected, the offendling
comnand is aborted, when the user
dliscovers a sementic error, he has
convenient ways to remedy its effect by
specl flc commands that undo the effects of
previous commands. In concert with error
correct'on, he has powerful Intracommand

editing ‘eatures,

Individualized Interfaces. CONNECT

permits user: to seject personal desig-
natlons for commands and even creats macro
commands for tremselves to sinmpilfy or
expedite rthelr vork. On the basls of a

proflle maintalned for each us<ser, CONNECT

70

adjusts its internal operating parameters
to fit his Individual style, talloring Its
prompting and feedback responses to

reflect hls familiarlty with the service.

RESEARCH UIRECTIONS

In addition to technology already
avaliable for Implementing CONNECT, some
innovative methods are needed to deal with
the problems fac.nq the nontechnical user,

These methods fall into four categories:

Adaptive processes

8 Program structures

® Inteqrated tutorials

8 Response-time adjustments

Adaptive Processes

A cemmon fault of many man-machlne
systems is that, although they provide the
necessary functlons, they fall to flt any
particuiar application very weil. This
prop em may be due to a riald command
structure trat requires using overly
comple, commands to perform often-used
functions. CONNECT, on the other hand, Is
much more adaptable to each of its
potentlal appllcations., The wide range of

message-jike functlons It supports were

determlned by studying potential (seml-

automated and manual) user environments.

The user Interface Is incompletely

specl fled except with respect to a par-

ticular group of Individuals. The
command Janguage and service idiosyn~
crasies are adjusted %“on site® ¢to sult

the Individuai uSer environment, The

"on-site" adjustments are alded by models

of users and services that are used as
predictcrs In chooslng.
In addition to this slte-dependent

preadjustment, the service/user Inter-

actlons and intraservice dependenclies are

Instrumented. Data samples, collected
through real-time measuremernts, are
analyzed on the spot, and |mmediate

adjustments are recommended to the wuser.
The purpose of such dynamic evaluation Is

to further reflne the user’s performance,

nhile techniques for service self-~
reguletion are perhaps the Jeast well
known and understood of the varlous
technl aues dlscussed below, the potentlal

increase In efficiency to be calned by the

use of Instrument ation and adaptation s

thought to be great enough to warrant
including thls aspect In the project
study.

RESEARCH DIRECTIONS

Program Structure

Most large programmling systems are

structured to minimize the interactions

betveen modules, which provides clean

Intermodule Interfaces (In many cases null

Interfaces). This approach also tends to

produce vertlcal partitionlng, In which

each module decldes and provides for

Itself 1In all sltuatlons, resulting In an

uneven, heterogeneous system. CONNECT 1Is

partitioned horizontally, vith each module

responsible for a single service-wlde

functlon; all other modules needing thls

functlion use the single module designated

for that purpose.

Horlizontal structure prevents several

classlcal human-relsted probiems. Flrst,

nc application mcdule Interacts dir:ctiy

vitn the user, Ali input or output

activities are handl~d by a collection of
Interaction modules, which In turn Insures

that <ach Implementer wiil give more

thought to the user Interfsce standards.

Second, each module (several may be actlve

simultaneously) malntalns state Infor-
matlon In a data table, which allows
CONNECT to know its total state, a

requlsite for service monitoring of wuser

ynteraction. Flnally, all mdules must

Indicate on return hov to reverse thelr

T TR Ty

W!mr o e

RESEARCH DIRECT{ONS

effects, which glves the user methods to

abort or undo previous actlons,

Integrated Tutorials

Today many examples can be found of
el ther computer-alded instructlion (CAl) or
computer systens with help features,
CONKECT Integrates the two Into a tutcrial
service with novel capabllities. When the
user requests help, he [ls automatically
connected to the tutorlal module. Asi de
from conducting fixed dialogues with the
user, the tutorials are able to
demonstrate commands to tne user, and can
also ask the ser to try things and
observe any proulems, [n fact, a novice
user mignt spend Nhis first sessions

totaily under tutor observation.

In aadition to the above method of
operation, the tutorlal service aids the
us - in personalizlng language constructs
to reduce or eliminate those forms tnat
lead to Inefficlent and ineffective

per formance,

Fespot se~time Adjustments

Most interactive application systems
attempt to menimi ze response time,
However, wve opelieve that response-time

characteristics should e a stated,

72

reallzable goal, not an Iinstantaneous,
unrealizable Ideal only erratically
approached, CONNECT does nct try to
minimlze response time; Instead, it
adjusts response time In concert with the
user‘s psychologlcal expectatlons. Con-

sideratlons include the folloving:?

Providlng constant response for a glven
action, so that the user knows what

to expect,

® Making smal! resrcnse-time adjustments

to decrease tae user”’s error rate.

® Allowing tne user to do other wvork
while waiting, If a request Is not an

interactive response~tlime task,

EVOLVING DESIGH

The cesigio of the CJIJNNECT system has
evolved to meet tne needs and problems of
prospective users, ihe design now
consists of two partss the core system anc
a set of apnlication madul-=s, While the
appllication modules have not hbeen
speclifled In mich detail to thls point,
the core system tas been designed to a

fair level of detail.

This core system c<onsists of five
parts? 1) an txecutlive that supervises the

executlon of the system and provides the

interface between the operating system and
the rest of the service (i.e., the rest of

the core and the application modules);

2) a Command Langjuage Processor that

parses and examines all Input to the

service and mal ntalns a consistert

Inter face between the user and the

application rodules; 3) an tdltor respon-

sible for all text manlpulations the user

may requlre; 4) an Instrumentation and

adaptation packege, called the User

Moniter, that monitors the user’s

interactions and suggests nev dialojue

elements te perscnaiize the interface for

eacn user; ana finally, 5) a Tutor that

teaches the wuser and ai ds him in

regulating the aialogue forms for maximun

usey ‘s performance,

ine Executive

The CONNECT Executive (Exec),

functioning as the interface between the

operating system and the remalnder of the

CONNECT system, serves the following

purfoses:

1) It buffers the terminal u.er from

interaction with the primaery operating

system and channels all error Interaction
and housekeeplng communication through the

appropriate CONNECT module.

EVOLVING DESIGN

2) It acts as a common channel through

which all smodules request service from the
buffer the

operating system, in order to

rest of the system from changes to or
replacement of the primary operating
system,

3) [t provides the primary operating

system two supplementary services:

fulflllment of requirements not satlsfied

py TENEX and refermuiation of TENEX

service in a form sulted to the CONNECT

system or to particular CONNECT fu ctions.

Executlve services provided I|nclude

error control and system reguest routing.
The Exec supplements TENEX services poth
Dy providing services not available

through TENCX and by reformulating certaln
TENCX services for the convenlence ¢f the

programmer.,

The Command Language Processor

The Command Language Processor (CiLP),

which processes all wuser inputs, is the

complete !cqgical inpui Interface betveen

the user and the rest of the system (and

may be the complete output Interface as

«€li). ine cLe mist satisfy four

sometImes conflicting requirements:

i B

—

EVILVING DESIGN

i) secause the CLP provides the [anguage

and mechanism for service modules to

communicate with users, It must be general

and flexible. It must prcvide a command

language definition capabliity powerful

enough for the [nteractive service moduies

not as yet specified; at the same time,

however, It must be simple and convenjent

enough to use so that the service module

authors are willing and able to use it.

2) It must, at the same time, establish

an interface that can be understood by

corputer-naive users “ith minimal

training. [ts commands must be simple and

cecnsistent, WwWhile providing a lanquaqe

for writing commands for service moaule

authors, the (LP must simultaneousiy
represent the needs and interests of the

intended wusers. cxperience with other

computer systems has shown tnat these two

requirenents are often in direct conflict.

3) Cl? must provide alternate ways for

users to express thelr needs. Alternate

forms are used vhen the User Monlitor

detects inefficlent or ineffective

dl ~loque and, via the Tutor, suggests an
Improved form for @ particular user. If
the user elects to empioy @ newv dijaloque
element, the CLP must be able to parse and

understand It.

74

4) Finally, CLP must perform all |its

functlons In an especlally transparent

manner, It is expected to make avallablc

to the Tutorial and Help subsystems

Information about existing commands, the
user’s knowledge and use of them, and a

recent hlstory preced,ng an error.

The CLP may be seen as ¢ discrete
(horizontally structured) pleces: (1)
the Parser, String Processor, or Compiler

~d4 (2) the Interpreter, Virtual Machine,

or Executor, In effect the CLP is both a

complier (ror the command language as

entered by the wuser) and the virtual

machine whose Mmachine language® is the

tarqget larquage into which the compiler

transiates the user language. Within this

vievwpoint the remainder of the system

provides the functions that help define

the virtual machine. Henceforth we refer

to the first part of the CLP as tne

Command Lanquage Compiler (CLL) and the
s econd part as the Commamnd Langu

Executor (CLE).

Command Lanquage Compller. The task

of CLL Is to take the corrected Input

store and produce a program executaple by

the CLE. CLC has as tvo cof lts goals to

provide a conslstent, system-wide flavor

to the commind language. In order to

achleve these goals, cLC takes a
pseudo-narural-language approach to
commands, with the command lJanguage
deflned In terms of a very slimple

“nglish-like syntax. This Is not to say

that CLC attempts to interpret anything

Il ke general English Input. Rather the

CLC command syntax wuses the same basic

notatlons and categories (noun, verb,

adjective, etc.) that native English

speakers comprenend. Ail rules provided

by each appllcation module are defined in

these terms: the appllcation module author

is required to categorize the words he

uses to fit this framevork, CLC uses

thls framework tc provide horlzontal

consistency througliout the command

language.

Command Language Executor. CLE’s

task is to perform the services requested

by the wuser, which It accomplishes by

makiny calls on other modules of the

overall system,

Ihe Editor

IThe design of the CONNECT Editor has

proceeded from three basic maxims-

he <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>